927 resultados para MINIMALLY INVASIVE THERMOSTAT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Las técnicas de cirugía de mínima invasión (CMI) se están consolidando hoy en día como alternativa a la cirugía tradicional, debido a sus numerosos beneficios para los pacientes. Este cambio de paradigma implica que los cirujanos deben aprender una serie de habilidades distintas de aquellas requeridas en cirugía abierta. El entrenamiento y evaluación de estas habilidades se ha convertido en una de las mayores preocupaciones en los programas de formación de cirujanos, debido en gran parte a la presión de una sociedad que exige cirujanos bien preparados y una reducción en el número de errores médicos. Por tanto, se está prestando especial atención a la definición de nuevos programas que permitan el entrenamiento y la evaluación de las habilidades psicomotoras en entornos seguros antes de que los nuevos cirujanos puedan operar sobre pacientes reales. Para tal fin, hospitales y centros de formación están gradualmente incorporando instalaciones de entrenamiento donde los residentes puedan practicar y aprender sin riesgos. Es cada vez más común que estos laboratorios dispongan de simuladores virtuales o simuladores físicos capaces de registrar los movimientos del instrumental de cada residente. Estos simuladores ofrecen una gran variedad de tareas de entrenamiento y evaluación, así como la posibilidad de obtener información objetiva de los ejercicios. Los diferentes estudios de validación llevados a cabo dan muestra de su utilidad; pese a todo, los niveles de evidencia presentados son en muchas ocasiones insuficientes. Lo que es más importante, no existe un consenso claro a la hora de definir qué métricas son más útiles para caracterizar la pericia quirúrgica. El objetivo de esta tesis doctoral es diseñar y validar un marco de trabajo conceptual para la definición y validación de entornos para la evaluación de habilidades en CMI, en base a un modelo en tres fases: pedagógica (tareas y métricas a emplear), tecnológica (tecnologías de adquisición de métricas) y analítica (interpretación de la competencia en base a las métricas). Para tal fin, se describe la implementación práctica de un entorno basado en (1) un sistema de seguimiento de instrumental fundamentado en el análisis del vídeo laparoscópico; y (2) la determinación de la pericia en base a métricas de movimiento del instrumental. Para la fase pedagógica se diseñó e implementó un conjunto de tareas para la evaluación de habilidades psicomotoras básicas, así como una serie de métricas de movimiento. La validación de construcción llevada a cabo sobre ellas mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. Adicionalmente, los resultados obtenidos en la validación de apariencia fueron en general positivos en todos los grupos considerados (noveles, residentes, expertos). Para la fase tecnológica, se introdujo el EVA Tracking System, una solución para el seguimiento del instrumental quirúrgico basado en el análisis del vídeo endoscópico. La precisión del sistema se evaluó a 16,33ppRMS para el seguimiento 2D de la herramienta en la imagen; y a 13mmRMS para el seguimiento espacial de la misma. La validación de construcción con una de las tareas de evaluación mostró buenos resultados para tiempo, camino recorrido, profundidad, velocidad media, aceleración media, economía de área y economía de volumen. La validación concurrente con el TrEndo® Tracking System por su parte presentó valores altos de correlación para 8 de las 9 métricas analizadas. Finalmente, para la fase analítica se comparó el comportamiento de tres clasificadores supervisados a la hora de determinar automáticamente la pericia quirúrgica en base a la información de movimiento del instrumental, basados en aproximaciones lineales (análisis lineal discriminante, LDA), no lineales (máquinas de soporte vectorial, SVM) y difusas (sistemas adaptativos de inferencia neurodifusa, ANFIS). Los resultados muestran que en media SVM presenta un comportamiento ligeramente superior: 78,2% frente a los 71% y 71,7% obtenidos por ANFIS y LDA respectivamente. Sin embargo las diferencias estadísticas medidas entre los tres no fueron demostradas significativas. En general, esta tesis doctoral corrobora las hipótesis de investigación postuladas relativas a la definición de sistemas de evaluación de habilidades para cirugía de mínima invasión, a la utilidad del análisis de vídeo como fuente de información y a la importancia de la información de movimiento de instrumental a la hora de caracterizar la pericia quirúrgica. Basándose en estos cimientos, se han de abrir nuevos campos de investigación que contribuyan a la definición de programas de formación estructurados y objetivos, que puedan garantizar la acreditación de cirujanos sobradamente preparados y promocionen la seguridad del paciente en el quirófano. Abstract Minimally invasive surgery (MIS) techniques have become a standard in many surgical sub-specialties, due to their many benefits for patients. However, this shift in paradigm implies that surgeons must acquire a complete different set of skills than those normally attributed to open surgery. Training and assessment of these skills has become a major concern in surgical learning programmes, especially considering the social demand for better-prepared professionals and for the decrease of medical errors. Therefore, much effort is being put in the definition of structured MIS learning programmes, where practice with real patients in the operating room (OR) can be delayed until the resident can attest for a minimum level of psychomotor competence. To this end, skills’ laboratory settings are being introduced in hospitals and training centres where residents may practice and be assessed on their psychomotor skills. Technological advances in the field of tracking technologies and virtual reality (VR) have enabled the creation of new learning systems such as VR simulators or enhanced box trainers. These systems offer a wide range of tasks, as well as the capability of registering objective data on the trainees’ performance. Validation studies give proof of their usefulness; however, levels of evidence reported are in many cases low. More importantly, there is still no clear consensus on topics such as the optimal metrics that must be used to assess competence, the validity of VR simulation, the portability of tracking technologies into real surgeries (for advanced assessment) or the degree to which the skills measured and obtained in laboratory environments transfer to the OR. The purpose of this PhD is to design and validate a conceptual framework for the definition and validation of MIS assessment environments based on a three-pillared model defining three main stages: pedagogical (tasks and metrics to employ), technological (metric acquisition technologies) and analytical (interpretation of competence based on metrics). To this end, a practical implementation of the framework is presented, focused on (1) a video-based tracking system and (2) the determination of surgical competence based on the laparoscopic instruments’ motionrelated data. The pedagogical stage’s results led to the design and implementation of a set of basic tasks for MIS psychomotor skills’ assessment, as well as the definition of motion analysis parameters (MAPs) to measure performance on said tasks. Validation yielded good construct results for parameters such as time, path length, depth, average speed, average acceleration, economy of area and economy of volume. Additionally, face validation results showed positive acceptance on behalf of the experts, residents and novices. For the technological stage the EVA Tracking System is introduced. EVA provides a solution for tracking laparoscopic instruments from the analysis of the monoscopic video image. Accuracy tests for the system are presented, which yielded an average RMSE of 16.33pp for 2D tracking of the instrument on the image and of 13mm for 3D spatial tracking. A validation experiment was conducted using one of the tasks and the most relevant MAPs. Construct validation showed significant differences for time, path length, depth, average speed, average acceleration, economy of area and economy of volume; especially between novices and residents/experts. More importantly, concurrent validation with the TrEndo® Tracking System presented high correlation values (>0.7) for 8 of the 9 MAPs proposed. Finally, the analytical stage allowed comparing the performance of three different supervised classification strategies in the determination of surgical competence based on motion-related information. The three classifiers were based on linear (linear discriminant analysis, LDA), non-linear (support vector machines, SVM) and fuzzy (adaptive neuro fuzzy inference systems, ANFIS) approaches. Results for SVM show slightly better performance than the other two classifiers: on average, accuracy for LDA, SVM and ANFIS was of 71.7%, 78.2% and 71% respectively. However, when confronted, no statistical significance was found between any of the three. Overall, this PhD corroborates the investigated research hypotheses regarding the definition of MIS assessment systems, the use of endoscopic video analysis as the main source of information and the relevance of motion analysis in the determination of surgical competence. New research fields in the training and assessment of MIS surgeons can be proposed based on these foundations, in order to contribute to the definition of structured and objective learning programmes that guarantee the accreditation of well-prepared professionals and the promotion of patient safety in the OR.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Cognitive skills training for minimally invasive surgery has traditionally relied upon diverse tools, such as seminars or lectures. Web technologies for e-learning have been adopted to provide ubiquitous training and serve as structured repositories for the vast amount of laparoscopic video sources available. However, these technologies fail to offer such features as formative and summative evaluation, guided learning, or collaborative interaction between users. Methodology: The "TELMA" environment is presented as a new technology-enhanced learning platform that increases the user's experience using a four-pillared architecture: (1) an authoring tool for the creation of didactic contents; (2) a learning content and knowledge management system that incorporates a modular and scalable system to capture, catalogue, search, and retrieve multimedia content; (3) an evaluation module that provides learning feedback to users; and (4) a professional network for collaborative learning between users. Face validation of the environment and the authoring tool are presented. Results: Face validation of TELMA reveals the positive perception of surgeons regarding the implementation of TELMA and their willingness to use it as a cognitive skills training tool. Preliminary validation data also reflect the importance of providing an easy-to-use, functional authoring tool to create didactic content. Conclusion: The TELMA environment is currently installed and used at the Jesús Usón Minimally Invasive Surgery Centre and several other Spanish hospitals. Face validation results ascertain the acceptance and usefulness of this new minimally invasive surgery training environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of minimally invasive surgical videos is a powerful tool to drive new solutions for achieving reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. This paper presents how video analysis contributes to the development of new cognitive and motor training and assessment programs as well as new paradigms for image-guided surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Objective assessment of psychomotor skills has become an important challenge in the training of minimally invasive surgical (MIS) techniques. Currently, no gold standard defining surgical competence exists for classifying residents according to their surgical skills. Supervised classification has been proposed as a means for objectively establishing competence thresholds in psychomotor skills evaluation. This report presents a study comparing three classification methods for establishing their validity in a set of tasks for basic skills’ assessment. Methods Linear discriminant analysis (LDA), support vector machines (SVM), and adaptive neuro-fuzzy inference systems (ANFIS) were used. A total of 42 participants, divided into an experienced group (4 expert surgeons and 14 residents with >10 laparoscopic surgeries performed) and a nonexperienced group (16 students and 8 residents with <10 laparoscopic surgeries performed), performed three box trainer tasks validated for assessment of MIS psychomotor skills. Instrument movements were captured using the TrEndo tracking system, and nine motion analysis parameters (MAPs) were analyzed. The performance of the classifiers was measured by leave-one-out cross-validation using the scores obtained by the participants. Results The mean accuracy performances of the classifiers were 71 % (LDA), 78.2 % (SVM), and 71.7 % (ANFIS). No statistically significant differences in the performance were identified between the classifiers. Conclusions The three proposed classifiers showed good performance in the discrimination of skills, especially when information from all MAPs and tasks combined were considered. A correlation between the surgeons’ previous experience and their execution of the tasks could be ascertained from results. However, misclassifications across all the classifiers could imply the existence of other factors influencing psychomotor competence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of minimally invasive surgical videos is a powerful tool to drive new solutions for achieving reproducible training programs, objective and transparent assessment systems and navigation tools to assist surgeons and improve patient safety. This paper presents how video analysis contributes to the development of new cognitive and motor training and assessment programs as well as new paradigms for image-guided surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Residents learning nontechnical skills in Europe face two problems: (1) the difficulty to fit learning time in their overloaded schedules; and (2) the lack of standard pedagogical models for all countries. Online video-based repositories such as WeBSurg or WebOP provide ubiquitous access to surgical contents. However, their pedagogical facets have not been fully exploited and they are often seen as quick-reference repositories rather than full e-learning alternatives. We present a new pedagogically-supported Technology Enhanced Learning (TEL) solution, MISTELA, designed by surgeons, pedagogical experts and engineers. MISTELA aims at building a common European pedagogical model supported by ICT technologies and elearning. The solution proposes a pedagogical model based on a framework for pedagogically-informed design of e-learning platforms. It is composed of (1) an authoring tool for editing and augmenting videos; (2) a media asset management system; and (3) a virtual learning environment. Support of the European Association for Endoscopic Surgery (EAES) and validation of the solution, will help to determine its full potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare intraoperative cerebral microembolic load between minimally invasive extracorporeal circulation (MiECC) and conventional extracorporeal circulation (CECC) during isolated surgical aortic valve replacement (SAVR), we conducted a randomized trial in patients undergoing primary elective SAVR at a tertiary referral hospital. The primary outcome was the procedural phase-related rate of high-intensity transient signals (HITS) on transcranial Doppler ultrasound. HITS rate was used as a surrogate of cerebral microembolism in pre-defined procedural phases in SAVR using MiECC or CECC with (+F) or without (-F) an oxygenator with integrated arterial filter. Forty-eight patients were randomized in a 1:1 ratio to MiECC or CECC. Due to intraprocedural Doppler signal loss (n = 3), 45 patients were included in final analysis. MiECC perfusion regimen showed a significantly increased HITS rate compared to CECC (by a factor of 1.75; 95% confidence interval, 1.19-2.56). This was due to different HITS rates in procedural phases from aortic cross-clamping until declamping [phase 4] (P = 0.01), and from aortic declamping until stop of extracorporeal perfusion [phase 5] (P = 0.05). Post hoc analysis revealed that MiECC-F generated a higher HITS rate than CECC+F (P = 0.005), CECC-F (P = 0.05) in phase 4, and CECC-F (P = 0.03) in phase 5, respectively. In open-heart surgery, MiECC is not superior to CECC with regard to gaseous cerebral microembolism. When using MiECC for SAVR, the use of oxygenators with integrated arterial line filter appears highly advisable. Only with this precaution, MiECC confers a cerebral microembolic load comparable to CECC during this type of open heart surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: We aimed to assess the outcomes including the effect on quality of life (QoL) of a group of patients having a minimally invasive esophagectomy (MIE). Methods: Patients with esophageal cancer were offered MIE over a 22-month period. Data on outcomes were collected prospectively, including formal quality-of-assessments. Results: There were 25 patients offered MIE. Two patients were converted to a laparotomy to improve the lymphadenectomy. There were no deaths. Respiratory problems (pneumonia, 28%) were the most common in the 64% of patients who had a complication. The median blood loss was 300 ml, time of surgery 330 min, and time to discharge 11 days. There was a decrease in the measured QoL both in general and specifically for the esophageal patients, taking 18-24 months to return to baseline. Conclusion: MIE was performed with morbidity similar to other approaches. There were no clear benefits shown in this group of patients with respect to postoperative recovery or short- to medium-term QoL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Anterior and posterior segment eye diseases are highly challenging to treat, due to the barrier properties and relative inaccessibility of the ocular tissues. Topical eye drops and systemically delivered treatments result in low bioavailability. Alternatively, direct injection of medication into the ocular tissues is clinically employed to overcome the barrier properties, but injections cause significant tissue damage and are associated with a number of untoward side effects and poor patient compliance. Microneedles (MNs) has been recently introduced as a minimally invasive means for localizing drug formulation within the target ocular tissues with greater precision and accuracy than the hypodermic needles.  Areas covered: This review article seeks to provide an overview of a range of challenges that are often faced to achieve efficient ocular drug levels within targeted tissue(s) of the eye. It also describes the problems encountered using conventional hypodermic needle-based ocular injections for anterior and posterior segment drug delivery. It discusses research carried out in the field of MNs, to date.
Expert opinion: MNs can aid in localization of drug delivery systems within the selected ocular tissue. And, hold the potential to revolutionize the way drug formulations are administered to the eye. However, the current limitations and challenges of MNs application warrant further research in this field to enable its widespread clinical application.  

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The retrocaval ureter is a rare congenital entity, classically managed with open pyeloplasty techniques. The experience obtained with the laparoscopic approach of other more frequent causes of ureteropelvic junction (UPJ) obstruction has opened the method for the minimally invasive approach of the retrocaval ureter. In our paper, we describe a clinical case of a right retrocaval ureter managed successfully with laparoscopic dismembered pyeloplasty. The main standpoints of the procedure are described. Our results were similar to others published by other urologic centers, which demonstrates the safety and feasibility of the procedure for this condition.