971 resultados para MINE DRAINAGE
Resumo:
Fine-grained pyrite is the earliest generation of pyrite and the most abundant sulfide within the Urquhart Shale at Mount Isa, northwest Queensland. The pyrite is intimately interbanded with ore-grade Pb-Zn miner alization at the Mount Isa mine but is also abundant north and south of the mine at several stratigraphic horizons within the Urquhart Shale. Detailed sedimentologic, petrographic, and sulfur isotope studies of the Urquhart Shale, mostly north of the mine, reveal that the fine-grained pyrite (delta(34)S = -3.3 to +26.3 parts per thousand) formed by thermochemical sulfate reduction during diagenesis. The sulfate source was local sulfate evaporites, pseudo morphs of which are present throughout the Urquhart Shale (i.e., gypsum, anhydrite, and barite). Deep-burial diagenetic replacement of these evaporites resulted in sulfate-bearing ground waters which migrated parallel to bedding. Fine-grained pyrite formed where these fluids infiltrated and then interacted with carbon-rich laminated siltstones. Comparison of the sulfur isotope systematics of fine-grained pyrite and spatially associated base metal sulfides from the Mount Isa Pb-Zn and Cu orebodies indicates a common sulfur source of ultimately marine origin for all sulfide types. Different sulfur isotope ratio distributions for the various sulfides are the result of contrasting formation mechanisms and/or depositional conditions rather than differing sulfur sources. The sulfur isotope systematics of the base metal and associated iron sulfide generations are consistent with mineralization by reduced hydrothermal fluids, perhaps generated by bulk reduction of evaporite-sourced sulfate-bearing waters generated deeper in the Mount Isa Group, the sedimentary sequence which contains the Urquhart Shale. The available sulfur isotope data from the Mount Isa orebodies are consistent with either a chemically and thermally zoned, evolving Cu-Pb-Zn system, or discrete Cu and Pb-Zn mineralizing events linked by a common sulfur source.
Resumo:
A previously unknown chemolithoautotrophic arsenite-oxidizing bacterium has been isolated from a gold mine in the Northern Territory of Australia. The organism, designated NT-26, was found to be a gram-negative motile rod with two subterminal flagella. In a minimal medium containing only arsenite as the electron donor (5 mM), oxygen as the electron acceptor, and carbon dioxide-bicarbonate as the carbon source, the doubling time for chemolithoautotrophic growth was 7.6 h. Arsenite oxidation was found to be catalyzed by a periplasmic arsenite oxidase (optimum pH, 5.5). Based upon 16S rDNA phylogenetic sequence analysis, NT-26 belongs to the Agrobacterium/Rhizbium branch of the alpha-Proteobacteria and may represent a new species. This recently discovered organism is the most rapidly growing chemolithoautotrophic arsenite oxidizer known.
Resumo:
Most soils contain preferential flow paths that can impact on solute mobility. Solutes can move rapidly down the preferential flow paths with high pore-water velocities, but can be held in the less permeable region of the soil matrix with low pore-water velocities, thereby reducing the efficiency of leaching. In this study, we conducted leaching experiments with interruption of the flow and drainage of the main flow paths to assess the efficiency of this type of leaching. We compared our experimental results to a simple analytical model, which predicts the influence of the variations in concentration gradients within a single spherical aggregate (SSA) surrounded by preferential flow paths on leaching. We used large (length: 300 mm, diameter: 216 mm) undisturbed field soil cores from two contrasting soil types. To carry out intermittent leaching experiments, the field soil cores were first saturated with tracer solution (CaBr2), and background solution (CaCl2) was applied to mimic a leaching event. The cores were then drained at 25- to 30-cm suction to empty the main flow paths to mimic a dry period during which solutes could redistribute within the undrained region. We also conducted continuous leaching experiments to assess the impact of the dry periods on the efficiency of leaching. The flow interruptions with drainage enhanced leaching by 10-20% for our soils, which was consistent with the model's prediction, given an optimised equivalent aggregate radius for each soil. This parameter quantifies the time scales that characterise diffusion within the undrained region of the soil, and allows us to calculate the duration of the leaching events and interruption periods that would lead to more efficient leaching. Application of these methodologies will aid development of strategies for improving management of chemicals in soils, needed in managing salts in soils, in improving fertiliser efficiency, and in reclaiming contaminated soils. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Drainage of a saturated horizontal aquifer following a sudden drawdown is reanalyzed using the Boussinesq equation. The effect of the finite length of the aquifer is considered in detail. An analytical approximation based on a superposition principle yields a very good estimate of the outflow when compared to accurate numerical solutions. An illustration of the new analytical approach to analyze basin-scale field data is used to demonstrate possible field applications of the new solution.
Resumo:
In sub-humid South India, recent studies have shown that black soil areas (Vertisols and vertic Intergrades), located on flat valley bottoms, have been rejuvenated through the incision of streambeds, inducing changes in the pedoclimate and soil transformation. Joint pedological, geochemical and geophysical investigations were performed in order to better understand the ongoing processes and their contribution to the chemistry of local rivers. The seasonal rainfall causes cycles of oxidation and reduction in a perched watertable at the base of the black soil, while the reduced solutions are exported through a loamy sand network. This framework favours a ferrolysis process, which causes low base saturation and protonation of clay, leading to the weathering of 2:1 then 1:1 clay minerals. Maximum weathering conditions occur at the very end of the wet season, just before disappearance of the perched watertable. Therefore, the by-products of soil transformation are partially drained off and calcareous nodules, then further downslope, amorphous silica precipitate upon soil dehydration. The ferrolysed area is fringing the drainage system indicating that its development has been induced by the streambed incision. The distribution of (14)C ages of CaCO(3) nodules suggests that the ferrolysis process started during the late Holocene, only about 2 kyr B.P. at the studied site and about 5 kyr B.P. at the watershed outlet. The results of this study are applied to an assessment of the physical erosion rate (4.8x10(-3) m/kyr) since the recent reactivation of the erosion process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background. Bilioduodenal (BD) and biliojejunal (BJ) derivation induce enterobiliary reflux and bile stasis. Decompression of the excluded loop of the Roux-en-Y (BJD) was proposed to minimize these effects. The aim of this study was to compare the influence of these three modalities of biliary bypass on hepatic lesion repair in rats with secondary biliary fibrosis. Materials and Methods. Rats with 15 d of biliary obstruction underwent BD, BJ, and BJD drainage and were compared with a group submitted to simulated operation (SO) and biliary obstruction (CBO). The serum values of total and fractional bilirubin, alkaline phosphatase (ALP), and aminotransferases (AST and ALT), as well as hepatobiliointestinal excretion determined with (99m)Tc-Disida, were used for comparison. In addition, we used morphometric analyses to estimate the mass of the hepatocytes, bile ducts, and liver fibrosis. We also counted hepatic stellate cells (SC). Results. For each of the three modalities of biliary drainage, there were significant reductions in bilirubin, AST, ALP, and the number of SCs. The recovery of the estimated mass of all histologic components occurred only after BJ and BJD; in the BD group, the estimated hepatocyte mass was reduced compared with the SO group. The residual hepatic radioactivity of (99m)Tc-Disida was greater in the BJD group than in the SO group. Conclusions. The interposition of the jejunal loop between the biliary tree and the intestine may slow hepatobiliary clearance of radioactivity, even though it provides the resolution of cholestasis and is effective in recovering from hepatic lesions. (C) 2011 Elsevier Inc. All rights reserved.