496 resultados para MICROSATELLITES
Resumo:
Hemophilia A is an X-linked, inherited, bleeding disorder caused by the partial or total inactivity of the coagulation factor VIII (FVIII). Due to difficulties in the direct recognition of the disease-associated mutation in the F8 gene, indirect diagnosis using polymorphic markers located inside or close to the gene is used as an alternative for determining the segregation of the mutant gene within families and thus for detecting carrier individuals and/or assisting in prenatal diagnosis. This study characterizes the allelic and haplotype frequencies, genetic diversity, population differentiation and linkage disequilibrium of five microsatellites (F8Int1, F8Int13, F8Int22, F8Int25.3 and IKBKG) in samples of healthy individuals from Sao Paulo, Rio Grande do Sul and Pernambuco and of patients from Sao Paulo with haemophilia A to determine the degree of informativeness of these microsatellites for diagnostic purposes. The interpopulational diversity parameters highlight the differences among the analyzed population samples. Regional differences in allelic frequencies must be taken into account when conducting indirect diagnosis of haemophilia A. With the exception of IKBKG, all of the microsatellites presented high heterozygosity levels. Using the markers described, diagnosis was possible in 10 of 11 families. The F8Int22, F8Int1, F8Int13, F8Int25.3 and IKBKG microsatellites were informative in seven, six, five and two of the cases, respectively, demonstrating the effectiveness of using these microsatellites in prenatal diagnosis and in carrier identification in the Brazilian population.
Resumo:
Dispersal, or the amount of dispersion between an individual's birthplace and that of its offspring, is of great importance in population biology, behavioural ecology and conservation, however, obtaining direct estimates from field data on natural populations can be problematic. The prickly forest skink, Gnypetoscincus queenslandiae, is a rainforest endemic skink from the wet tropics of Australia. Because of its log-dwelling habits and lack of definite nesting sites, a demographic estimate of dispersal distance is difficult to obtain. Neighbourhood size, defined as 4 piD sigma (2) (where D is the population density and sigma (2) the mean axial squared parent-offspring dispersal rate), dispersal and density were estimated directly and indirectly for this species using mark-recapture and microsatellite data, respectively, on lizards captured at a local geographical scale of 3 ha. Mark-recapture data gave a dispersal rate of 843 m(2)/generation (assuming a generation time of 6.5 years), a time-scaled density of 13 635 individuals * generation/km(2) and, hence, a neighbourhood size of 144 individuals. A genetic method based on the multilocus (10 loci) microsatellite genotypes of individuals and their geographical location indicated that there is a significant isolation by distance pattern, and gave a neighbourhood size of 69 individuals, with a 95% confidence interval between 48 and 184. This translates into a dispersal rate of 404 m(2)/generation when using the mark-recapture density estimation, or an estimate of time-scaled population density of 6520 individuals * generation/km(2) when using the mark-recapture dispersal rate estimate. The relationship between the two categories of neighbourhood size, dispersal and density estimates and reasons for any disparities are discussed.
Resumo:
Sympatric individuals of Rattus fuscipes and Rattus leucopus, two Australian native rats from the tropical wet forests of north Queensland, are difficult to distinguish morphologically and are often confused in the field. When we started a study on fine-scale movements of these species, using microsatellite markers, we found that the species as identified in the field did not form coherent genetic groups. In this study, we examined the potential of an iterative process of genetic assignment to separate specimens from distinct (e.g. species, populations) natural groups. Five loci with extensive overlap in allele distributions between species were used for the iterative process. Samples were randomly distributed into two starting groups of equal size and then subjected to the test. At each iteration, misassigned samples switched groups, and the output groups from a given round of assignment formed the input groups for the next round. All samples were assigned correctly on the 10th iteration, in which two genetic groups were clearly separated. Mitochondrial DNA sequences were obtained from samples from each genetic group identified by assignment, together with those of museum voucher specimens, to assess which species corresponded to which genetic group. The iterative procedure was also used to resolve groups within species, adequately separating the genetically identified R. leucopus from our two sampling sites. These results show that the iterative assignment process can correctly differentiate samples into their appropriate natural groups when diagnostic genetic markers are not available, which allowed us to resolve accurately the two R. leucopus and R. fuscipes species. Our approach provides an analytical tool that may be applicable to a broad variety of situations where genetic groups need to be resolved.
Resumo:
Much progress has been made on inferring population history from molecular data. However, complex demographic scenarios have been considered rarely or have proved intractable. The serial introduction of the South-Central American cane Load Bufo marinas in various Caribbean and Pacific islands involves four major phases: a possible genetic admixture during the first introduction, a bottleneck associated with founding, a transitory, population boom, and finally, a demographic stabilization. A large amount of historical and demographic information is available for those introductions and can be combined profitably with molecular data. We used a Bayesian approach to combine this information With microsatellite (10 loci) and enzyme (22 loci) data and used a rejection algorithm to simultaneously estimate the demographic parameters describing the four major phases of the introduction history,. The general historical trends supported by microsatellites and enzymes were similar. However, there was a stronger support for a larger bottleneck at introductions for microsatellites than enzymes and for a more balanced genetic admixture for enzymes than for microsatellites. Verb, little information was obtained from either marker about the transitory population boom observed after each introduction. Possible explanations for differences in resolution of demographic events and discrepancies between results obtained with microsatellites and enzymes were explored. Limits Of Our model and method for the analysis of nonequilibrium populations were discussed.
Resumo:
The green macroalgal species Caulerpa taxifolia is indigenous to tropical/subtropical Australia, ranging as far south as 28degrees and 29degrees 15' S on the Australian mainland east and west coasts, respectively. The origin of disjunct populations of the species, discovered in 2000 on the Australian mainland east coast at localities to 35degrees S remains unknown, variously attributed to introduced exotic strains or range extensions from other eastern Australian populations. Some naturally occurring Australian populations of C. taxifolia are similar to Mediterranean C. taxifolia. In Australia, large broad forms of the species, which have been known in the region since 1860, grow luxuriantly in sheltered seagrass meadows, with some of these populations tolerating minimum surface seawater temperatures in winter of 12.5 to 14.5degreesC. Accordingly, the contention that the Mediterranean has been invaded by a genetically-modified, large, cold-adapted strain of C. taxifolia may be incorrect. It is crucial that genetic markers (DNA fingerprinting, microsatellites) sensitive at the population level are used to accurately determine the genetic relatedness of C. taxifolia populations.
Resumo:
The importance of founder events in promoting evolutionary changes on islands has been a subject of long-running controversy. Resolution of this debate has been hindered by a lack of empirical evidence from naturally founded island populations. Here we undertake a genetic analysis of a series of historically documented, natural colonization events by the silvereye species-complex (Zosterops lateralis), a group used to illustrate the process of island colonization in the original founder effect model. Our results indicate that single founder events do not affect levels of heterozygosity or allelic diversity, nor do they result in immediate genetic differentiation between populations. Instead, four to five successive founder events are required before indices of diversity and divergence approach that seen in evolutionarily old forms. A Bayesian analysis based on computer simulation allows inferences to be made on the number of effective founders and indicates that founder effects are weak because island populations are established from relatively large flocks. Indeed, statistical support for a founder event model was not significantly higher than for a gradual-drift model for all recently colonized islands. Taken together, these results suggest that single colonization events in this species complex are rarely accompanied by severe founder effects, and multiple founder events and/or long-term genetic drift have been of greater consequence for neutral genetic diversity.
Resumo:
Theory predicts that in small isolated populations random genetic drift can lead to phenotypic divergence; however this prediction has rarely been tested quantitatively in natural populations. Here we utilize natural repeated island colonization events by members of the avian species complex, Zosterops lateralis, to assess whether or not genetic drift alone is an adequate explanation for the observed patterns of microevolutionary divergence in morphology. Morphological and molecular genetic characteristics of island and mainland populations are compared to test three predictions of drift theory: (1) that the pattern of morphological change is idiosyncratic to each island; (2) that there is concordance between morphological and neutral genetic shifts across island populations; and (3) for populations whose time of colonization is known, that the rate of morphological change is sufficiently slow to be accounted for solely by genetic drift. Our results are not consistent with these predictions. First, the direction of size shifts was consistently towards larger size, suggesting the action of a nonrandom process. Second, patterns of morphological divergence among recently colonized populations showed little concordance with divergence in neutral genetic characters. Third, rate tests of morphological change showed that effective population sizes were not small enough for random processes alone to account for the magnitude of microevolutionary change. Altogether, these three lines of evidence suggest that drift alone is not an adequate explanation of morphological differentiation in recently colonized island Zosterops and therefore we suggest that the observed microevolutionary changes are largely a result of directional natural selection.
Resumo:
We describe the patterns of paternity success from laboratory mating experiments conducted in Antechinus agilis, a small size dimorphic carnivorous marsupial (males are larger than females). A previous study found last-male sperm precedence in this species, but they were unable to sample complete Utters, and did not take male size and relatedness into account. We tested whether last-male sperm precedence regardless of male size still holds for complete litters. We explored the relationship between male mating order, male size, timing of mating and relatedness on paternity success. Females were mated with two males of different size with either the large or the small male first, with 1 day rest between the matings. Matings continued for 6 h. in these controlled conditions male size did not have a strong effect on paternity success, but mating order did. Males mating second sired 69.5% of the offspring. Within first mated males, males that mated closer to ovulation sired more offspring, To a lesser degree, variation appeared also to be caused by differences in genetic compatibility of the female and the male, where high levels of allele-sharing resulted in lower paternity success.
Resumo:
Although largely solitary, humpback whales exhibit a number of behaviours where individuals co-operate with one another, for example during bubble net feeding. Such cases could be due to reciprocal altruism brought on by exceptional circumstances, for example the presence of abundant shoaling fish. An alternative explanation is that these behaviours have evolved through kin selection. With little restriction to either communication or movement, diffuse groups of relatives could maintain some form of social organization without the need to travel in tight-nit units. To try to distinguish between these hypotheses, we took advantage of the fact that migrating humpback whales often swim together in small groups. If kin selection is important in humpback whale biology, these groups should be enriched for relatives. Consequently, we analysed biopsy samples from 57 groups of humpback whales migrating off Eastern Australia in 1992. A total of 142 whales were screened for eight microsatellite markers. Mitochondrial DNA sequences (371 bp) were also used to verify and assist kinship identification. Our data add support to the notion that mothers travel with their offspring for the first year of the calf's life. However, beyond the presence of mother-calf/yearling pairs, no obvious relatedness pattern was found among whales sampled either in the same pod or on the same day. Levels of relatedness did not vary between migratory phases (towards or away from the breeding ground), nor between the two sexes considered either overall or in the north or south migrations separately. These findings suggest that, if any social organization does exist, it is formed transiently when needed rather than being a constant feature of the population, and hence is more likely based on reciprocal altruism than kin selection.
Resumo:
Microsatellites were isolated and characterized from Anopheles flavirostris, the principal malaria vector in the Philippines. Fifty of the 150 positive clones sequenced contained mostly dinucleotide microsatellites and only 16 had trinucleotide repeats. We designed primers from the unique sequences flanking 18 microsatellite loci. Of these, 11 loci produced successful amplification and revealed high levels of polymorphism; 86 alleles were detected with allele number ranging from 2 to 16 at each locus. The high allelic variability will make these microsatellite loci very useful for taxonomic and population genetic studies.
Resumo:
Ten microsatellite loci are described in Araucaria cunninghamii, the first reported in the Araucariaceae. Eight were tested in sections Eutacta and Bunya, which diverged more than 200 MYA, and to the sister genus Agathis. Specific amplification products within the expected size range were obtained for six to eight loci in section Eutacta (depending on species), five loci in section Bunya and three. loci in Agathis. Two of the loci (CRCAc1 and CRCAc2, both GA repeats) produced specific amplification products in all taxa, with orthology confirmed by sequence analysis. The repeats were perfect in all taxa. The flanking sequences were extremely conserved, with sequence divergence of 0% to 2.0% within Araucaria species and 2.9% to 7.5% between Araucaria and Agathis. These microsatellites represent some of the most conserved microsatellite loci reported in plants. This may be due to a low evolutionary rate in Araucariaceae genome or the loci may be closely associated with highly conserved, unreported genes.
Resumo:
Microsatellites were used to analyse 68 collections of Helicoverpa armigera in the Dawson/Callide Valleys in central Queensland. The study aimed to evaluate the genetic structure in this region over a 12-month period (September 2000-August 2001). The results detected genetic shifts in H. armigera collections, with genetic changes occurring month by month. Collections in any month were genetically distant from the preceding month's collections. There was no observed difference between collections of H. armigera from the Biloela region and those found in the Theodore region of central Queensland. The data support the current area-wide management strategies for H. armigera by reinforcing the importance and contribution of local management practices. The study also indicates a need for the continuation of regional or Australia-wide approaches to management of the low levels of immigration that are occurring, and for future high pest pressure years.
Resumo:
Bemisia tabaci (Hemiptera: Aleyrodidae) is a haplo-diploid species with a global distribution demonstrating strong geographical structure with eight recognizable genetic groups. Fifteen microsatellite loci (335 alleles, 6-44 alleles per locus) were derived from four of the eight groups and were then screened across 33 populations. These loci clearly differentiate the populations. The microsatellites amplified best in individuals from genetic groups representing the Mediterranean, Middle East, Asia (three groups) and Australasia/Oceania and amplified less well with populations from sub-Saharan Africa and the New World. This differential amplification pattern is a direct result of the relatedness to the microsatellite source material.
Resumo:
The availability of variable genetic markers for groupers (Serranidae) has generally been limited to mitochondrial DNA. For studies of population genetic structure, more loci are usually required; particularly useful are those that are nuclear in origin such as microsatellites. Here, we isolated and characterized 9 microsatellite loci from the endemic Hawaiian grouper Epinephelus quernus using a biotin-labeled oligonucleotide-streptavidin-coated magnetic bead approach. Of the 20 repeat-containing fragments isolated, 15 had sufficient flanking region in which to design primers. Among these, 9 produced consistent polymerase chain reaction product, and 6 were highly variable. These 6 loci were all composed of dinucleotide repeats, with the number of alleles ranging from 6 to 18, and heterozygosities from 33.3% to 91.7%. The high levels of variability observed should make these markers useful for population genetic studies of E. quernus, and potentially other epinephelines.
Resumo:
World Congress of Malacology, Ponta Delgada, July 22-28, 2013.