958 resultados para MICROBIAL LIPOPROTEINS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sepsis is among the leading causes of death worldwide and its incidence is increasing. Defined as the host response to infection, sepsis is a clinical syndrome considered to be the expression of a dysregulated immune reaction induced by danger signals that may lead to organ failure and death. Remarkable progresses have been made in our understanding of the molecular basis of host defenses in recent years. The host defense response is initiated by innate immune sensors of danger signals designated under the collective name of pattern-recognition receptors. Members of the family of microbial sensors include the complement system, the Toll-like receptors, the nucleotide-binding oligomerization domainlike receptors, the RIG-I-like helicases and the C-type lectin receptors. Ligand-activated pattern-recognition receptors kick off a cascade of intracellular events resulting in the expression of co-stimulatory molecules and release of effector molecules playing a fundamental role in the initiation of the innate and adaptive immune responses. Fine tuning of proinflammatory and anti-inflammatory reactions is critical for keeping the innate immune response in check. Overwhelming or dysregulated responses induced by infectious stimuli may have dramatic consequences for the host as shown by the profound derangements observed in sepsis. Unfortunately, translational research approaches aimed at the development of therapies targeting newly identified innate immune pathways have not held their promises. Indeed, all recent clinical investigations of adjunctive anti-sepsis treatments had little, if any, impact on morbidity and all-cause mortality of sepsis. Dissecting the mechanisms underlying the transition from infection to sepsis is essential for solving the sepsis enigma. Important components of the puzzle have already been identified, but the hunt must go on in the laboratory and at the bedside.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stable microbial system in the respiratory tract acts as an important defense mechanism against pathogenic microorganisms. Perturbations in this system may allow pathogens to establish. In an ecological environment such as the respiratory tract, there are many diverse factors that play a role in the establishment of the indigenous flora. In the present work we studied the normal microbial flora of different areas of the respiratory tract of mice and their evolution from the time the mice were born. Our interest was to know which were the dominant groups of microorganisms in each area, which were the first capable of colonizing and which dominated over time to be used as probiotic microorganisms. Our results show that Gram negative facultatively anaerobic bacilli and strict anaerobic microorganisms were the last ones to appear in the bronchia, while aerobic and Gram positive cocci were present in all the areas of the respiratory tract. The number of facultative aerobes and strict anaerobes were similar in the nasal passage, pharynx instilled and trachea, but lower in bronchia. The dominant species were Streptococcus viridans and Staphylococcus saprophyticcus, followed by S. epidermidis, Lactobacilli and S. cohnii I which were present on every studied days but at different proportions. This paper is the first part of a research topic investigating the protective effect of the indigenous flora against pathogens using the mice as an experimental model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superantigens (SAgs) are microbial proteins which have potent effects on the immune system. They are presented by major histocompatibility complex (MHC) class II molecules and interact with a large number of T cells expressing specific T cell receptor V beta domains. Encounter of a SAg leads initially to the stimulation and subsequently to the clonal deletion of reactive T cells. SAgs are expressed by a wide variety of microorganisms which use them to exploit the immune system to their own advantage. Bacterial SAgs are exotoxins which are linked to several diseases in humans and animals. A classical example is the toxic shock syndrome in which the massive release of cytokines by SAg-reactive cells is thought to play a major pathogenic role. The best characterized viral SAg is encoded by mouse mammary tumour virus (MMTV) and has proved to have a major influence on the viral life cycle by dramatically increasing the efficiency of viral infection. In this paper, we review the general properties of SAgs and discuss the different types of microorganisms which produce these molecules, with a particular emphasis on the role played by the SAg-induced immune response in the course of microbial infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this survey is to assess the microbiological impact of irrigation water on lettuces produced on two urban agricultural sites and sold on markets; 6 and 7%, respectively, of lettuces coming from the sites of Pikine and Patte d'Oie were Salmonella spp. positive. Lettuces irrigated with shallow groundwater (''Ceanes'' water) were more contaminated (8% at both Pikine and Patte d'Oie sites) compared to those irrigated with wastewater (4% at Pikine) or well water (5% at Patte d'Oie). As for the lettuces in marketplaces, their contamination seems to depend on the type of treatment occurring before sale. Lettuces previously washed in the ``Ceanes'' were more contaminated than those rinsed with tap water at the marketplace. Salmonella spp. have been isolated from all marketplaces. However, the rates of contamination in markets surrounding Patte d'Oie are higher (9 and 11% at Grand Yoff and Dalifort) than those surrounding Pikine (4 and 2% at Zinc and Sham) or Rufisque, the control (2%). Our results confirm that the reuse of wastewater in irrigation is an alternative to animal manure. Its risk of microbial contamination can be significantly reduced by washing the vegetables with tap water before they are sold. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’aigua i l’energia formen un binomi indissociable. En relació al cicle de l’aigua, des de fa varies dècades s’han desenvolupat diferents formes per recuperar part de l’energia relacionada amb l’aigua, per exemple a partir de centrals hidroelèctriques. No obstant, l’ús d’aquesta aigua també porta associat un gran consum energètic, relacionat sobretot amb el transport, la distribució, la depuració, etc... La depuració d’aigües residuals porta associada una elevada demanda energètica (Obis et al.,2009). En termes energètics, tot i que la despesa elèctrica d’una EDAR varia en funció de diferents paràmetres com la configuració i la capacitat de la planta, la càrrega a tractar, etc... es podria considerar que el rati mig seria d’ aproximadament 0.5 KWh•m-3.Els principals costos d’explotació estan relacionats tant amb la gestió de fangs (28%) com amb el consum elèctric (25%) (50% tractament biològic). Tot i que moltes investigacions relacionades amb el tractament d’aigua residual estan encaminades en disminuir els costos d’operació, des de fa poques dècades s’està investigant la viabilitat de que l’aigua residual fins i tot sigui una font d’energia, canviant la perspectiva, i començant a veure l’aigua residual no com a una problemàtica sinó com a un recurs. Concretament s’estima que l’aigua domèstica conté 9.3 vegades més energia que la necessària per el seu tractament mitjançant processos aerobis (Shizas et al., 2004). Un dels processos més desenvolupats relacionats amb el tractament d’aigües residuals i la producció energètica és la digestió anaeròbia. No obstant, aquesta tecnologia permet el tractament d’altes càrregues de matèria orgànica generant un efluent ric en nitrogen que s’haurà de tractar amb altres tecnologies. Per altre banda, recentment s’està investigant una nova tecnologia relacionada amb el tractament d’aigües residuals i la producció energètica: les piles biològiques (microbial fuel cells, MFC). Aquesta tecnologia permet obtenir directament energia elèctrica a partir de la degradació de substrats biodegradables (Rabaey et al., 2005). Les piles biològiques, més conegudes com a Microbial Fuel Cells (acrònim en anglès, MFC), són una emergent tecnologia que està centrant moltes mirades en el camp de l’ investigació, i que es basa en la producció d’energia elèctrica a partir de substrats biodegradables presents en l’aigua residual (Logan., 2008). Els fonaments de les piles biològiques és molt semblant al funcionament d’una pila Daniell, en la qual es separa en dos compartiments la reacció d’oxidació (compartiment anòdic) i la de reducció (compartiment catòdic) amb l’objectiu de generar un determinat corrent elèctric. En aquest estudi, bàsicament es mostra la posada en marxa d'una pila biològica per a l'eliminació de matèria orgànica i nitrogen de les aigües residuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported (Dobreva, I., Waeber, G., Mooser, V., James, R. W., and Widmann, C. (2003) J. Lipid Res. 44, 2382-2390) that low density lipoproteins (LDLs) induce activation of the p38 MAPK pathway, resulting in fibroblast spreading and lamellipodia formation. Here, we show that LDL-stimulated fibroblast spreading and wound sealing are due to secretion of a soluble factor. Using an antibody-based human protein array, interleukin-8 (IL-8) was identified as the main cytokine whose concentration was increased in supernatants from LDL-stimulated cells. Incubation of supernatants from LDL-treated cells with an anti-IL-8 blocking antibody completely abolished their ability to induce cell spreading and mediate wound closure. In addition, fibroblasts treated with recombinant IL-8 spread to the same extent as cells incubated with LDL or supernatants from LDL-treated cells. The ability of LDL and IL-8 to induce fibroblast spreading was mediated by the IL-8 receptor type II (CXCR-2). Furthermore, LDL-induced IL-8 production and subsequent wound closure required the activation of the p38 MAPK pathway, because both processes were abrogated by a specific p38 inhibitor. Therefore, the capacity of LDLs to induce fibroblast spreading and accelerate wound closure relies on their ability to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL cholesterol levels, IL-8 production, and extensive remodeling of the vessel wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glomalean fungi induce and colonize symbiotic tissue called arbuscular mycorrhiza on the roots of most land plants. Other fungi also colonize plants but cause disease not symbiosis. Whole-transcriptome analysis using a custom-designed Affymetrix Gene-Chip and confirmation with real-time RT-PCR revealed 224 genes affected during arbuscular mycorrhizal symbiosis. We compared these transcription profiles with those from rice roots that were colonized by pathogens (Magnaporthe grisea and Fusarium moniliforme). Over 40% of genes showed differential regulation caused by both the symbiotic and at least one of the pathogenic interactions. A set of genes was similarly expressed in all three associations, revealing a conserved response to fungal colonization. The responses that were shared between pathogen and symbiont infection may play a role in compatibility. Likewise, the responses that are different may cause disease. Some of the genes that respond to mycorrhizal colonization may be involved in the uptake of phosphate. Indeed, phosphate addition mimicked the effect of mycorrhiza on 8% of the tested genes. We found that 34% of the mycorrhiza-associated rice genes were also associated with mycorrhiza in dicots, revealing a conserved pattern of response between the two angiosperm classes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, an extensive in vitro antimicrobial profiling was performed for three medicinal plants grown in Cuba, namely Simarouba glauca, Melaleuca leucadendron and Artemisia absinthium. Ethanol extracts were tested for their antiprotozoal potential against Trypanosoma b. brucei, Trypanosoma cruzi, Leishmania infantum and Plasmodium falciparum. Antifungal activities were evaluated against Microsporum canis and Candida albicans whereas Escherichia coli and Staphylococcus aureus were used as test organisms for antibacterial activity. Cytotoxicity was assessed against human MRC-5 cells. Only M. leucadendron extract showed selective activity against microorganisms tested. Although S. glauca exhibited strong activity against all protozoa, it must be considered non-specific. The value of integrated evaluation of extracts with particular reference to selectivity is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The health benefits associated with the consumption of polyphenol-rich foods have been studied in depth, however, the full mechanism of action remains unknown. One of the proposed mechanisms is through microbiota interaction. In the present study, we aimed to explore the relationship between changes in fecal microbiota and changes in urinary phenolic metabolites after wine interventions. Nine participants followed a randomized, crossover, controlled interventional trial. After the washout period, they received red wine, dealcoholized red wine or gin for 20 days each. Polyphenol metabolites (n > 60) in urine were identified and quantified by UPLC-MS/MS and the microbial content of fecal samples was quantified by real-time quantitative PCR. Interventions with both red wine and dealcoholized red wine increased the fecal concentration of Bifidobacterium, Enterococcus and Eggerthella lenta, compared to gin intervention and baseline. When participants were categorized in tertiles of changes in fecal bacteria, those in the highest tertile of Bifidobacteria had higher urinary concentration changes in syringic acid, p-coumaric acid, 4-hydroxybenzoic acid and homovanillic acid (all anthocyanin metabolites) than those in tertile 1 (P < 0.05, all). In addition, changes of Bifidobacteria correlated positively with changes of these metabolites (r = 0.5-0.7, P < 0.05, all). Finally, the 68.5% changes in Bifidobacteria can be predicted by syringic acid and 4-hydroxybenzoic acid changes. This study confirms the important role of polyphenols as bacterial substrates and their modulatory capacity as an important field in the research of new products with prebiotic and probiotic characteristics for the food industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal microcalorimetry (IMC) has been used in the past to monitor metabolic activities in living systems. A few studies have used it on ecological research. In this study, IMC was used to monitor oxalotrophic activity, a widespread bacterial metabolism found in the environment, and particularly in soils. Six model strains were inoculated in solid angle media with K-oxalate as the sole carbon source. Cupriavidus oxalaticus, Cupriavidus necator, and Streptomyces violaceoruber presented the highest activity (91, 40, and 55 μW, respectively) and a maximum growth rate (μmax h(-1) ) of 0.264, 0.185, and 0.199, respectively, among the strains tested. These three strains were selected to test the incidence of different oxalate sources (Ca, Cu, and Fe-oxalate salts) in the metabolic activity. The highest activity was obtained in Ca-oxalate for C. oxalaticus. Similar experiments were carried out with a model soil to test whether this approach can be used to measure oxalotrophic activity in field samples. Although measuring oxalotrophic activity in a soil was challenging, there was a clear effect of the amendment with oxalate on the metabolic activity measured in soil. The correlation between heat flow and growth suggests that IMC analysis is a powerful method to monitor bacterial oxalotrophic activity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we have investigated the functional profile of CD4 T cells from patients with common variable immunodeficiency (CVID), including production of cytokines and proliferation in response to bacteria and virus-derived antigens. We show that the functional impairment of CD4 T cells, including the reduced capacity to proliferate and to produce IFN-γ and IL-2, was restricted to bacteria-specific and not virus-specific CD4 T cells. High levels of endotoxins were found in the plasma of patients with CVID, suggesting that CD4 T cell dysfunction might be caused by bacterial translocation. Of note, endotoxemia was associated with significantly higher expression of programmed death 1 (PD-1) on CD4 T cells. The blockade of the PD-1-PD-L1/2 axis in vitro restored CD4 T cell proliferation capacity, thus indicating that PD-1 signaling negatively regulates CD4 T cell functions. Finally, we showed that intravenous immunoglobulin G (IVIG) treatment significantly reduced endotoxemia and the percentage of PD-1(+) CD4 T cells, and restored bacteria-specific CD4 T cell cytokine production and proliferation. In conclusion, the present study demonstrates that the CD4 T cell exhaustion and functional impairment observed in CVID patients is associated with bacterial translocation and that IVIG treatment resolves bacterial translocation and restores CD4 T cell functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gut microbiota has recently been proposed as a crucial environmental factor in the development of metabolic diseases such as obesity and type 2 diabetes, mainly due to its contribution in the modulation of several processes including host energy metabolism, gut epithelial permeability, gut peptide hormone secretion, and host inflammatory state. Since the symbiotic interaction between the gut microbiota and the host is essentially reflected in specific metabolic signatures, much expectation is placed on the application of metabolomic approaches to unveil the key mechanisms linking the gut microbiota composition and activity with disease development. The present review aims to summarize the gut microbial-host co-metabolites identified so far by targeted and untargeted metabolomic studies in humans, in association with impaired glucose homeostasis and/or obesity. An alteration of the co-metabolism of bile acids, branched fatty acids, choline, vitamins (i.e., niacin), purines, and phenolic compounds has been associated so far with the obese or diabese phenotype, in respect to healthy controls. Furthermore, anti-diabetic treatments such as metformin and sulfonylurea have been observed to modulate the gut microbiota or at least their metabolic profiles, thereby potentially affecting insulin resistance through indirect mechanisms still unknown. Despite the scarcity of the metabolomic studies currently available on the microbial-host crosstalk, the data-driven results largely confirmed findings independently obtained from in vitro and animal model studies, putting forward the mechanisms underlying the implication of a dysfunctional gut microbiota in the development of metabolic disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The diagnosis of microbial ureteral stent colonisation (MUSC) is difficult, since routine diagnostic techniques do not accurately detect microorganisms embedded in biofilms. New methods may improve diagnostic yield and understanding the pathophysiology of MUSC. The aim of the present study was to evaluate the potential of sonication in the detection of MUSC and to identify risk factors for device colonisation. METHODS: Four hundred and eight polyurethane ureteral stents of 300 consecutive patients were prospectively evaluated. Conventional urine culture (CUC) was obtained prior to stent placement and device removal. Sonication was performed to dislodge adherent microorganisms. Data of patient sex and age, indwelling time and indication for stent placement were recorded. RESULTS: Sonicate-fluid culture detected MUSC in 36%. Ureteral stents inserted during urinary tract infection (UTI) were more frequently colonised (59%) compared to those placed in sterile urine (26%; P < 0.001). Female sex (P < 0.001) and continuous stenting (P < 0.005) were significant risk factors for MUSC; a similar trend was observed in patients older than 50 years (P = 0.16). MUSC and indwelling time were positively correlated (P < 0.005). MUSC was accompanied by positive CUC in 36%. Most commonly isolated microorganisms were Coagulase-negative staphylococci (18.3%), Enterococci (17.9%) and Enterobacteriaceae (16.9%). CONCLUSIONS: Sonication is a promising approach in the diagnosis of MUSC. Significant risk factors for MUSC are UTI at the time of stent insertion, female sex, continuous stenting and indwelling time. CUC is a poor predictor of MUSC. The clinical relevance of MUSC needs further evaluation to classify isolated microorganism properly as contaminants or pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to quantify the colony forming units (cfu) on latex procedure gloves in the beginning, middle, and end of the containers in real (professional) and controlled (researcher) gloving situations; evaluate the microbial load of the gloves, considering the time of exposure in the environment. This comparative prospective study was conducted at an intensive care unit of a teaching hospital. The microbiological data was collected from the gloves using digital-pressure. Microbiological evaluations were performed on 186 pairs of gloves: 93 in the control group and 93 in real gloving situations. In the control group, the average cfu was 4.7 against 6.2 in the real gloving situation. Hence, no statistically significant difference was found (p=.601). In addition, the cfu values of gloves in the beginning, middle and end of the containers also did not show any significant differences (p>.05). The most common strain was Staphylococcus spp. The time of exposure in the environment did not increase the cfu value of the latex gloves.