947 resultados para MESH equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is a report of students' responses to instruction which was based on the use of concrete representations to solve linear equations. The sample consisted of 21 Grade 8 students from a middle-class suburban state secondary school with a reputation for high academic standards and innovative mathematics teaching. The students were interviewed before and after instruction. Interviews and classroom interactions were observed and videotaped. A qualitative analysis of the responses revealed that students did not use the materials in solving problems. The increased processing load caused by concrete representations is hypothesised as a reason.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report presents the findings of an exploratory study into the perceptions held by students regarding the use of criterion-referenced assessment in an undergraduate differential equations class. Students in the class were largely unaware of the concept of criterion referencing and of the various interpretations that this concept has among mathematics educators. Our primary goal was to investigate whether explicitly presenting assessment criteria to students was useful to them and guided them in responding to assessment tasks. Quantitative data and qualitative feedback from students indicates that while students found the criteria easy to understand and useful in informing them as to how they would be graded, the manner in which they actually approached the assessment activity was not altered as a result of the use of explicitly communicated grading criteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum-likelihood estimates of the parameters of stochastic differential equations are consistent and asymptotically efficient, but unfortunately difficult to obtain if a closed-form expression for the transitional probability density function of the process is not available. As a result, a large number of competing estimation procedures have been proposed. This article provides a critical evaluation of the various estimation techniques. Special attention is given to the ease of implementation and comparative performance of the procedures when estimating the parameters of the Cox–Ingersoll–Ross and Ornstein–Uhlenbeck equations respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work a novel hybrid approach is presented that uses a combination of both time domain and frequency domain solution strategies to predict the power distribution within a lossy medium loaded within a waveguide. The problem of determining the electromagnetic fields evolving within the waveguide and the lossy medium is decoupled into two components, one for computing the fields in the waveguide including a coarse representation of the medium (the exterior problem) and one for a detailed resolution of the lossy medium (the interior problem). A previously documented cell-centred Maxwell’s equations numerical solver can be used to resolve the exterior problem accurately in the time domain. Thereafter the discrete Fourier transform can be applied to the computed field data around the interface of the medium to estimate the frequency domain boundary condition in-formation that is needed for closure of the interior problem. Since only the electric fields are required to compute the power distribution generated within the lossy medium, the interior problem can be resolved efficiently using the Helmholtz equation. A consistent cell-centred finite-volume method is then used to discretise this equation on a fine mesh and the underlying large, sparse, complex matrix system is solved for the required electric field using the iterative Krylov subspace based GMRES iterative solver. It will be shown that the hybrid solution methodology works well when a single frequency is considered in the evaluation of the Helmholtz equation in a single mode waveguide. A restriction of the scheme is that the material needs to be sufficiently lossy, so that any penetrating waves in the material are absorbed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a mass-conservative vertex-centred finite volume method for efficiently solving the mixed form of Richards’ equation in heterogeneous porous media. The spatial discretisation is particularly well-suited to heterogeneous media because it produces consistent flux approximations at quadrature points where material properties are continuous. Combined with the method of lines, the spatial discretisation gives a set of differential algebraic equations amenable to solution using higher-order implicit solvers. We investigate the solution of the mixed form using a Jacobian-free inexact Newton solver, which requires the solution of an extra variable for each node in the mesh compared to the pressure-head form. By exploiting the structure of the Jacobian for the mixed form, the size of the preconditioner is reduced to that for the pressure-head form, and there is minimal computational overhead for solving the mixed form. The proposed formulation is tested on two challenging test problems. The solutions from the new formulation offer conservation of mass at least one order of magnitude more accurate than a pressure head formulation, and the higher-order temporal integration significantly improves both the mass balance and computational efficiency of the solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We seek numerical methods for second‐order stochastic differential equations that reproduce the stationary density accurately for all values of damping. A complete analysis is possible for scalar linear second‐order equations (damped harmonic oscillators with additive noise), where the statistics are Gaussian and can be calculated exactly in the continuous‐time and discrete‐time cases. A matrix equation is given for the stationary variances and correlation for methods using one Gaussian random variable per timestep. The only Runge–Kutta method with a nonsingular tableau matrix that gives the exact steady state density for all values of damping is the implicit midpoint rule. Numerical experiments, comparing the implicit midpoint rule with Heun and leapfrog methods on nonlinear equations with additive or multiplicative noise, produce behavior similar to the linear case.