971 resultados para MARTEL-INLET
Resumo:
One of the most critical gas turbine engine components, rotor blade tip and casing, are exposed to high thermal load. It becomes a significant design challenge to protect the turbine materials from this severe situation. As a result of geometric complexity and experimental limitations, Computational Fluid Dynamics (CFD) tools have been used to predict blade tip leakage flow aerodynamics and heat transfer at typical engine operating conditions. In this paper, the effect of turbine inlet temperature on the tip leakage flow structure and heat transfer has been studied numerically. Uniform low (LTIT: 444 K) and high (HTIT: 800 K) turbine inlet temperature have been considered. The results showed the higher turbine inlet temperature yields the higher velocity and temperature variations in the leakage flow aerodynamics and heat transfer. For a given turbine geometry and on-design operating conditions, the turbine power output can be increased by 1.48 times, when the turbine inlet temperature increases 1.80 times. Whereas the averaged heat fluxes on the casing and the blade tip become 2.71 and 2.82 times larger, respectively. Therefore, about 2.8 times larger cooling capacity is required to keep the same turbine material temperature. Furthermore, the maximum heat flux on the blade tip of high turbine inlet temperature case reaches up to 3.348 times larger than that of LTIT case. The effect of the interaction of stator and rotor on heat transfer features is also explored using unsteady simulations.
Resumo:
As the designers of modern automotive turbochargers strive to increase map width and lower the mass flow rate at which compressor surge occurs, the recirculating flows at the impeller inlet are becoming a much more relevant aerodynamic feature. Compressors with relatively large map widths tend to have very large recirculating regions at the inlet when operating close to surge; these regions greatly affect the expected performance of the compressor.
This study analyses the inlet recirculation region numerically using several modern automotive turbocharger centrifugal compressors. Using 3D Computational Fluid Dynamics (CFD) and a single passage model, the point at which the recirculating flow begins to develop and the rate at which it grows are investigated. All numerical modelling has been validated using measurements taken from hot gas stand tests for all compressor stages. The paper improves upon an existing correlation between the rate of development of the recirculating region and the compressor stage, which is supported by results from the numerical analysis.
Resumo:
Mixed flow turbines represent a potential solution to the increasing requirement for high pressure, low velocity ratio operation in turbocharger applications. While literature exists for the use of these turbines at such operating conditions, there is a lack of detailed design guidance for defining the basic geometry of the turbine, in particular, the cone angle – the angle at which the inlet of the mixed flow turbine is inclined to the axis. This investigates the effect and interaction of such mixed flow turbine design parameters.
Computational Fluids Dynamics was initially used to investigate the performance of a modern radial turbine to create a baseline for subsequent mixed flow designs. Existing experimental data was used to validate this model.
Using the CFD model, a number of mixed flow turbine designs were investigated. These included studies varying the cone angle and the associated inlet blade angle.
The results of this analysis provide insight into the performance of a mixed flow turbine with respect to cone and inlet blade angle.
Resumo:
Over the years it was observed at the Ria de Aveiro lagoon inlet, near the head of the north breakwater, a depth increase that might threaten the stability of this structure. A trend of accretion in the navigation channel of this lagoon is observed, endangering the navigation in this region. In order to understand the origin of these and other trends observed, the knowledge of the sediment transport in the study area is imperative. The main aim of this work is understanding the dominant physical processes in the sediment transport of sediment at the Ria de Aveiro lagoon inlet and adjacent area, improving knowledge of this region morphodynamics. The methodology followed in this study consisted in the analyzes of the topohydrographic surveys performed by the Administration of the Aveiro Harbor, and in the numerical simulations results performed with the morphodynamic modeling system MORSYS2D. The analysis of the surveys was performed by studying the temporal evolution of the bathymetry. The numerical analysis was based on the implementation of the model at the study area, sensitivity analysis of the formulations used to compute the sediment transport to the variation of input parameters (e.g. depth, sediment size, tidal currents) and analysis of the sediment uxes and bathymetric changes predicted. The simulations considered as sediment transport forcing the tidal currents only and the coupled forcing of tides and waves. Considering the wave e ect as sediment transport forcing, both monochromatic waves and a wave regime were simulated. The results revealed that the observed residual sediment transport patterns are generated due to the channel con guration. Inside the lagoon the uxes are mainly induced by the tidal currents action, restricting the action of waves to the inlet and adjacent coast. In the navigation channel the residual sediment uxes predicted are directed o - shore with values between 7 and 40 m3=day generating accretions of approximately 10 m3=day for the shallower region and 35 m3=day for the region between the tidal gauge and the tri^angulo das mar es. At the inlet, the residual uxes are approximately 30 m3=day inducing trends of erosion of approximately 20 m3=day. At the North side of the nearshore accretion is predicted, while at the South side is predicted erosion, at the rates of 250 and 1500 m3=day, respectively. It was also concluded that the waves with higher contribution to the residual sediment uxes are those with heights between 4 and 5 m. However, the storm waves with heights bigger than 5 m, despite their 10% of frequency of occurrence are responsible for 25% of the observed sediment transport.
Resumo:
Tese de dout., Ciências do Mar, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2003
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Trenchards Inlet S100 Recreational Shellfish Ground in Beaufort County.
Resumo:
The South Carolina Department of Natural Resources provides maps to recreational and state shellfish grounds, available to the public for recreational harvesting or to commercial harvest. This map shows the location of Murrells Inlet S358 Recreational Shellfish Ground in Georgetown County.
Resumo:
Senior thesis written for Oceanography 444
Resumo:
Senior thesis written for Oceanography 444
Resumo:
Thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445
Resumo:
Senior thesis written for Oceanography 445