863 resultados para MAGNETITE FILMS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports an investigation on techniques for determining elastic modulus and intrinsic stress gradient in plasma-enhanced chemical vapor deposition (PECVD) silicon nitride thin films. The elastic property of the silicon nitride thin films was determined using the nanoindentation method on silicon nitride/silicon bilayer systems. A simple empirical formula was developed to deconvolute the film elastic modulus. The intrinsic stress gradient in the films was determined by using micrometric cantilever beams, cross-membrane structures and mechanical simulation. The deflections of the silicon nitride thin film cantilever beams and cross-membranes caused by in-thickness stress gradients were measured using optical interference microscopy. Finite-element beam models were built to compute the deflection induced by the stress gradient. Matching the deflection computed under a given gradient with that measured experimentally on fabricated samples allows the stress gradient of the PECVD silicon nitride thin films introduced from the fabrication process to be evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation of mechanical properties of thin films using nanoindentation was reported. Silicon nitride thin films with different thicknesses were deposited using plasma enhanced chemical vapor deposition (PECVD) on Si substrate. Nanoindentation was used to measure their elastic modulus and hardness. The results indicated that for a film/substrate bilayer system, the measured mechanical properties are significantly affected by the substrate properties. Empirical formulas were proposed for deconvoluting the film properties from the measured bilayer properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4-carboxyphenyl-appended macrocyclic ligand trans-6,13-dimethyl-6-((4-carboxybenzyl)amino)-1,4,8,11-tetraazacyclotetradecane-6-amine (HL10) has been synthesised and complexed with Co-III. The mononuclear complexes [Co(HL10)(CN)](2+) and [CoL10(OH)](+) have been prepared and the crystal structures of their perchlorate salts are presented, where the ligand is bound in a pentadentate mode in each case while the 4-carboxybenzyl-substituted pendent amine remains free from the metal. The cyano-bridged dinuclear complex [CoL10-mu-NC-Fe(CN)(5)](2-) was also prepared and chemisorbed on titania-coated ITO conducting glass. The adsorbed complex is electrochemically active and cyclic voltammetry of the modified ITO working electrode in both water and MeCN solution was undertaken with simultaneous optical spectroscopy. This experiment demonstrates that reversible electrochemical oxidation of the Fe-II centre is coupled with rapid changes in the optical absorbance of the film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bovine pericardium, for cardiac valve fabrication, was coated with either chitosan or silk fibroin film. In vitro calcification tests of coated and non coated bovine pericardium were performed in simulated body fluid solution in order to investigate potential alternatives to minimize calcification on implanted heart valves. Complementary, morphology was assessed by scanning electron microscopy - SEM; X-ray diffraction (XRD) and infrared spectroscopy (FTIR-ATR) were performed for structural characterization of coatings and biocompatibility of chitosan. Silk fibroin films were assayed by in vitro cytotoxicity and endothelial cell growth tests. Bovine pericardium coated with silk fibroin or chitosan did not present calcification during in vitro calcification tests, indicating that these biopolymeric coatings do not induce bovine pericardium calcification. Chitosan and silk fibroin films were characterized as non cytotoxic and silk fibroin films presented high affinity to endothelial cells. The results indicate that bovine pericardium coated with silk fibroin is a potential candidate for cardiac valve fabrication, since the affinity of silk fibroin to endothelial cells can be explored to induce the tissue endothelization and therefore, increase valve durability by increasing their mechanical resistance and protecting them against calcification. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report biogenic magnetite whiskers, with axial ratios of 6: 1, elongated in the [1 1 1]. [1 1 2] and [1 0 0] directions, resembling the magnetite whiskers detected in the Martian meteorite ALH84001 by Bradley ct nl., and interpreted by those authors as evidence of vapour-phase (abiogenic) growth. Magnetosomal whiskers with extended defects consistent with screw dislocations and magnetosomes resembling flattened twinned platelets, as well as other twinning phenomena and other structural defects, are also reported here. Magnetosomes with teardrop-shaped. cuboidal. irregular and jagged structures similar to those detected in ALH84001 by McKay et al.. coprecipitation of magnetite possibly with amorphous calcium carbonate, coprecipitation of magnetite possibly with amorphous silica, the incorporation of titanium in volutin inclusions and disoriented arrays of magnetosomes are also described. These observations demonstrate that the structures of the magnetite particles in ALH84001. their spatial arrange ment and coprecipitation with carbonates and proximity to silicates are consistent with being biogenic. Electron-beam-induced flash-melting of magnetosomes produced numerous screw dislocations in the (1 1 1). (1 0 0) and (1 1 0) lattice planes and induced fusion of platelets. From this, the lack of screw dislocations reported in the magnetite particles in ALH84001 (McKay et al.. and Bradley et al.) indicates that they have a low-temperature origin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-cans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern, Multilayer films of the acids show only a single-step order-disorder transition at the malting point, This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached, Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed, In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains. (C) 2001 Elsevier Science B,V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structures of mixed Langmuir (floating) monolayers and Langmuir-Blodgett (LB) films of a phenanthroline-porphyrin with cadmium arachidate (PhenPor + CdAr) have been investigated by synchrotron X-ray grazing incidence diffraction (GIXD) and specular X-ray reflectivity (SXR). GIXD measurements of the floating monolayers showed only one peak, arising from the CdAr domains in the films, at a scattering angle of 21.5 degrees. This is consistent with a hexagonal structure (alpha = 4.77 Angstrom). The correlation length in these domains is 250 Angstrom. GMD measurements of the LB films, however, show two sets of diffraction features: one arises from CdAr domains with a rectangular in-plane structure (alpha = 7.44 Angstrom and b = 4.90 Angstrom) and a correlation length of 85 Angstrom; the other is from porphyrin domains with an oblique in-plane structure (alpha (p) 15.2 Angstrom, b(p) = 8.86 Angstrom, and gamma (p) = 80 degrees) and a correlation length of 105 Angstrom. These dimensions are consistent with the surface pressure-area isotherm measurements and indicate that the two components are immiscible. The thickness of the bilayer is 57 Angstrom, and there is no correlation between the bilayers. Introduction of a trigger compound does not alter the structure of the films but slightly increases the bilayer thickness. The SXR measurements of the floating monolayers also support the suggested immiscibility of the two components in the films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper theoretical models have been established that can account for the gas transmission through nanocomposite laminates, consisting of an oxide layer of finite permeability containing defects, on a polymer sheet of finite thickness. The defect shapes can either be in the form of long cracks or rectangular holes. The models offer a choice of exact numerical calculations or fast and intuitive analytical approximations. The experimental measurements of oxygen permeation through four different SiOx/poly (ethylene terephthalate) samples that were strained to produce distributions or cracks showed good agreement when compared with predicted results from the approximate analytic model. As a consequence of this observation, a key practical conclusion is that, because of the logarithmic dependence of transmission on the width of a crack, for a given strain it is better to have a small number of large cracks rather than a large number of small cracks. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper examines the development of starch-based plastics for use as biodegradable mulch film. A variety of starch-based polymers are blended with high performance biodegradable polyester polymers in order to determine the applicability of films to be processed on a film blowing line and to perform well in mulch film field trials. The process of material formulation, film blowing processing and scale-up and performance properties are highlighted for a successful material. Insights into future developments of starch-derived biodegradable polymers are given.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a model for permeation in oxide coated gas barrier films. The model accounts for diffusion through the amorphous oxide lattice, nano-defects within the lattice, and macro-defects. The presence of nano-defects indicate the oxide layer is more similar to a nano-porous solid (such as zeolite) than silica glass with respect to permeation properties. This explains why the permeability of oxide coated polymers is much greater, and the activation energy of permeation much lower, than values expected for polymers coated with glass. We have used the model to interpret permeability and activation energies measured for the inert gases (He, Ne and Ar) in evaporated SiOx films of varying thickness (13-70 nm) coated on a polymer substrate. Atomic force and scanning electron microscopy were used to study the structure of the oxide layer. Although no defects could be detected by microscopy, the permeation data indicate that macro-defects (>1 nm), nano-defects (0.3-0.4 nm) and the lattice interstices (<0.3 nm) all contribute to the total permeation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Using the fastest dental X-ray film available is an easy way of reducing exposure to ionizing radiation. However, the diagnostic ability of fast films for the detection of proximal surface caries must be demonstrated before these films will become universally accepted. Methods: Extracted premolar and molar teeth were arranged to simulate a bitewing examination and radiographed using Ultraspeed and Ektaspeed Plus dental X-ray films. Three different exposure times were used for each film type. Six general dentists were used to determine the presence and depth of the decay in the proximal surfaces of the teeth radiographed. The actual extent of the decay in the teeth was determined by sectioning the teeth and examining them under a microscope. Results: There was no significant difference between the two films for the mean correct diagnosis. However, there was a significant difference between the means for the three exposure times used for Ultraspeed film. The practitioners used were not consistent in their ability to make a correct diagnosis, or for the film for which they got the highest correct diagnosis. Conclusions: Ektaspeed Plus dental X-ray film is just as reliable as Ultraspeed dental X-ray film for the detection of proximal surface decay. The effect of underexposure was significant for Ultraspeed, but not for Ektaspeed Plus. Patient exposure can be reduced significantly with no loss of diagnostic ability by changing from Ultraspeed X-ray film to Ektaspeed Plus X-ray film.