829 resultados para M-CSF
Resumo:
Abstract: A guide for health providers who work in perinatal health care systems provides a variety of ideas and successful approaches for promoting breastfeeding among low-income women, based on the premise that breastfeeding is the best method for feeding infants in the early months of life. The material is organized into 4 principal sections covering background information on various aspects of breastfeeding, specifically for low-income women; approaches to breast-feeding education at each of the 4 distinct phases of the prenatal and postpartum periods; sample lesson plans that may be used by health professionals or paraprofessionals in individual or group sessions; and a tabulation of references and resources for the use of health professionals in breastfeeding promotion efforts. (wz).
Resumo:
Includes bibliographies.
Resumo:
Macrophage activation is a key determinant of susceptibility and pathology in a variety of inflammatory diseases. The extent of macrophage activation is tightly regulated by a number of pro-inflammatory cytokines (e.g. IFN-gamma, IL-2, GM-CSF, IL-3) and anti-inflammatory cytokines (e.g. IL-4, IL-10, TGF-beta). Macrophage colony-stimulating factor (CSF-1/M-CSF) is a key differentiation, growth and survival factor for monocytes/macrophages and osteoclasts. The role of this factor in regulating macrophage activation is often overlooked. This review will summarize our current understanding of the effects of CSF-1 on the activation state of mature macrophages and its role in regulating immune responses.
Resumo:
We investigated whether the protection from graft-versus-host disease (GVHD) afforded by donor treatment with granulocyte colony-stimulating factor (G-CSF) could be enhanced by dose escalation. Donor treatment with human G-CSIF prevented GVHD in the B6 --> B6D2F1 murine model in a dose-dependent fashion, and murine G-CSF provided equivalent protection from GVHD at 10-fold lower doses. Donor pretreatment with a single dose of pegylated G-CSF (peg-G-CSF) prevented GVHD to a significantly greater extent than standard G-CSIF (survival, 75% versus 11%, P < .001). Donor T cells from peg-G-CSF-treated donors failed to proliferate to alloantigen and inhibited the responses of control T cells in an interleukin 10 (IL-10)-dependent-fashion in vitro. T cells from peg-GCSF-treated IL-10(-/-) donors induced lethal GVHD; T cells from peg-G-CSF-treated wild-type (wt) donors promoted long-term survival. Whereas T cells from peg-G-CSF wt donors were able to regulate GVHD induced by T cells from control-treated donors, T cells from G-CSF-treated wt donors and peg-G-CSF-treated IL-10(-/-) donors did not prevent mortality. Thus, peg-G-CSF is markedly superior to standard G-CSF for the prevention of GVHD following allogeneic stem cell transplantation (SCT), due to the generation of IL-10-producing regulatory T cells. These data support prospective clinical trials of peg-G-CSF-mobilized allogeneic blood SCT. (C) 2004 by The American Society of Hematology.
Resumo:
We previously reported that bacterial products such as LPS and CpG DNA down-modulated cell surface levels of the Colony Stimulating Factor (CSF)-1 receptor (CSF-1R) on primary murine macrophages in an all-or-nothing manner. Here we show that the ability of bacterial products to down-modulate the CSF-IR rendered bone marrow-derived macrophages (BMM) unresponsive to CSF-1 as assessed by Akt and ERK 1/2 phosphorylation. Using toll-like receptor (th-)9 as a model CSF-1-repressed gene, we show that LPS induced tlr9 expression in BMM only when CSF-1 was present, suggesting that LPS relieves CSF-1-mediated inhibition to induce gene expression. Using cDNA microarrays, we identified a cluster of similarly CSF-1 repressed genes in BMM. By real time PCR we confirmed that the expression of a selection of these genes, including integral membrane protein 2B (itm2b), receptor activity-modifying protein 2 (ramp2) and macrophage-specific gene 1 (mpg-1), were repressed by CSF-1 and were induced by LPS only in the presence of CSF-1. This pattern of gene regulation was also apparent in thioglycollate-elicited peritoneal macrophages (TEPM). LPS also counteracted CSF-1 action to induce mRNA expression of a number of transcription factors including interferon consensus sequence binding protein 1 (Icsbp1), suggesting that this mechanism leads to transcriptional reprogramming in macrophages. Since the majority of in vitro studies on macrophage biology do not include CSF-1, these genes represent a set of previously uncharacterised LPS-inducible genes. This study identifies a new mechanism of macrophage activation, in which LPS (and other toll-like receptor agonists) regulate gene expression by switching off the CSF-1R signal. This finding also provides a biological relevance to the well-documented ability of macrophage activators to down-modulate surface expression of the CSF-1R. (C) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Gene translocations that repress the function of the Runx1 transcription factor play a critical role in the development of myeloid leukemia. In this report, we demonstrate that Runx1 precisely regulates c-fms (CSF-1 receptor) gene expression. Runx1 controlled expression by binding to multiple sites within the mouse c-fms gene, allowing interaction between promoter and downstream enhancer elements. The runx1 and c-fms genes showed an identical pattern of expression in mature macrophages. Runx1 expression was repressed in CSF-1 stimulated, proliferating bone marrow-derived macrophages (BMM) and significantly increased in quiescent, CSF-1 starved cells. The RAW264.7 and Mono-Mac-6, macrophage-like cell lines expressed low levels of Runx1 and both showed growth arrest and cell death with ectopic expression of Runx1. The EM-3 cell line, which represents an early myeloid progenitor cell line, showed growth arrest with Runx1 expression in the absence of any detectable changes in cell differentiation. These findings suggest that Runx1 regulates growth and survival of myeloid cells and provide a novel insight into the role of Runx family gene translocations in leukemogenesis.
Resumo:
A case of aspergillus tracheobronchitis following influenza A infection in an immunocompetent 35 year old woman is described that required prolonged mechanical ventilation for airways obstruction. Treatment included liposomal amphotericin, inhaled amphotericin, gamma interferon and GM-CSF. Liposomal amphotericin therapy was associated with reversible hepatosplenomegaly. Inhaled corticosteroids with continued antifungal therapy were used for the management of severe recurrent airway obstruction. After a prolonged course of treatment she survived with fixed airways obstruction unresponsive to corticosteroids.
Resumo:
The peripheral giant cell lesion ( PG CL ) and the central giant cell lesion ( CGC L) are lesions histologically similar affecting the head and neck region . The study aimed to analyze the immunohistochemical expression of markers GLUT - 1 , GLUT - 3 and M - CSF in a series of cases of PGCL and CGCL , in trying to understand the different biological behavior of these pathologies . The sample consisted of 20 tissue specimens of PGCL 20 central lesion of not aggressive giant cell ( CLNAGC) and 20 central lesi on of aggressive giant cell ( CLAGC), coming from the Pathology Unit of Oral Pathology of the Department of Dentistry of UFRN . W as performed the s emi - quantitative and qualitative analysis of immunohistochemical expression of the markers in giant cells and m ononuclear cells . In relation to the GLUT - 1, it was found a statistically significant difference (p < 0.05) in the number of mononuclear cells immunomarked between the PGCL and the CLNAGC and between the PGCL and CLAGC . Regarding the intensity of staining w as also observed a statistically significant difference both at the mononuclear cells as in giant cells between PL and CLNAGC and between PGCL and CLAGC , at the giant cells there was also a statistically significant difference between the CLNAGC and CLAGC . In relation to GLUT - 3 , was found a statistically significant difference between PGCL and CLAGC and between CLAGC and CLNAGC in amount of mononuclear cells immunomarked . Regarding the intensity of labeling for such protein was found a statistically signifi cant difference at the giant cells between PL and CLAGC . To the M - CSF was observed only a statistically significant difference in the intensity of labeling at the mononuclear cells between PGCL and CLNAGC and between PGCL and CLAGC . Based on these results, we can conclude the participation of GLUT - 1, GLUT - 3 and M - CSF in the pathogenesis of the lesions studied. The bigger immunostaining of these proteins in mononuclear cells show that these cells perform a higher metabolic activity and osteoclastogenic, espe cially in CLAGC . It was found that the mononuclear cells were more related to the pathogenesis of the studied lesions than properly the giant s cell s.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.