998 resultados para Món rural català
Resumo:
A national-level safety analysis tool is needed to complement existing analytical tools for assessment of the safety impacts of roadway design alternatives. FHWA has sponsored the development of the Interactive Highway Safety Design Model (IHSDM), which is roadway design and redesign software that estimates the safety effects of alternative designs. Considering the importance of IHSDM in shaping the future of safety-related transportation investment decisions, FHWA justifiably sponsored research with the sole intent of independently validating some of the statistical models and algorithms in IHSDM. Statistical model validation aims to accomplish many important tasks, including (a) assessment of the logical defensibility of proposed models, (b) assessment of the transferability of models over future time periods and across different geographic locations, and (c) identification of areas in which future model improvements should be made. These three activities are reported for five proposed types of rural intersection crash prediction models. The internal validation of the model revealed that the crash models potentially suffer from omitted variables that affect safety, site selection and countermeasure selection bias, poorly measured and surrogate variables, and misspecification of model functional forms. The external validation indicated the inability of models to perform on par with model estimation performance. Recommendations for improving the state of the practice from this research include the systematic conduct of carefully designed before-and-after studies, improvements in data standardization and collection practices, and the development of analytical methods to combine the results of before-and-after studies with cross-sectional studies in a meaningful and useful way.
Resumo:
One major gap in transportation system safety management is the ability to assess the safety ramifications of design changes for both new road projects and modifications to existing roads. To fulfill this need, FHWA and its many partners are developing a safety forecasting tool, the Interactive Highway Safety Design Model (IHSDM). The tool will be used by roadway design engineers, safety analysts, and planners throughout the United States. As such, the statistical models embedded in IHSDM will need to be able to forecast safety impacts under a wide range of roadway configurations and environmental conditions for a wide range of driver populations and will need to be able to capture elements of driving risk across states. One of the IHSDM algorithms developed by FHWA and its contractors is for forecasting accidents on rural road segments and rural intersections. The methodological approach is to use predictive models for specific base conditions, with traffic volume information as the sole explanatory variable for crashes, and then to apply regional or state calibration factors and accident modification factors (AMFs) to estimate the impact on accidents of geometric characteristics that differ from the base model conditions. In the majority of past approaches, AMFs are derived from parameter estimates associated with the explanatory variables. A recent study for FHWA used a multistate database to examine in detail the use of the algorithm with the base model-AMF approach and explored alternative base model forms as well as the use of full models that included nontraffic-related variables and other approaches to estimate AMFs. That research effort is reported. The results support the IHSDM methodology.
Resumo:
This paper describes the optimization of conductor size and the voltage regulator location & magnitude of long rural distribution lines. The optimization minimizes the lifetime cost of the lines, including capital costs and losses while observing voltage drop and operational constraints using a Genetic Algorithm (GA). The GA optimization is applied to a real Single Wire Earth Return (SWER) network in regional Queensland and results are presented.
Resumo:
Safety interventions (e.g., median barriers, photo enforcement) and road features (e.g., median type and width) can influence crash severity, crash frequency, or both. Both dimensions—crash frequency and crash severity—are needed to obtain a full accounting of road safety. Extensive literature and common sense both dictate that crashes are not created equal, with fatalities costing society more than 1,000 times the cost of property damage crashes on average. Despite this glaring disparity, the profession has not unanimously embraced or successfully defended a nonarbitrary severity weighting approach for analyzing safety data and conducting safety analyses. It is argued here that the two dimensions (frequency and severity) are made available by intelligently and reliably weighting crash frequencies and converting all crashes to property-damage-only crash equivalents (PDOEs) by using comprehensive societal unit crash costs. This approach is analogous to calculating axle load equivalents in the prediction of pavement damage: for instance, a 40,000-lb truck causes 4,025 times more stress than does a 4,000-lb car and so simply counting axles is not sufficient. Calculating PDOEs using unit crash costs is the most defensible and nonarbitrary weighting scheme, allows for the simple incorporation of severity and frequency, and leads to crash models that are sensitive to factors that affect crash severity. Moreover, using PDOEs diminishes the errors introduced by underreporting of less severe crashes—an added benefit of the PDOE analysis approach. The method is illustrated with rural road segment data from South Korea (which in practice would develop PDOEs with Korean crash cost data).
Resumo:
Safety at roadway intersections is of significant interest to transportation professionals due to the large number of intersections in transportation networks, the complexity of traffic movements at these locations that leads to large numbers of conflicts, and the wide variety of geometric and operational features that define them. A variety of collision types including head-on, sideswipe, rear-end, and angle crashes occur at intersections. While intersection crash totals may not reveal a site deficiency, over exposure of a specific crash type may reveal otherwise undetected deficiencies. Thus, there is a need to be able to model the expected frequency of crashes by collision type at intersections to enable the detection of problems and the implementation of effective design strategies and countermeasures. Statistically, it is important to consider modeling collision type frequencies simultaneously to account for the possibility of common unobserved factors affecting crash frequencies across crash types. In this paper, a simultaneous equations model of crash frequencies by collision type is developed and presented using crash data for rural intersections in Georgia. The model estimation results support the notion of the presence of significant common unobserved factors across crash types, although the impact of these factors on parameter estimates is found to be rather modest.
Resumo:
It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.
Resumo:
Understanding the expected safety performance of rural signalized intersections is critical for (a) identifying high-risk sites where the observed safety performance is substantially worse than the expected safety performance, (b) understanding influential factors associated with crashes, and (c) predicting the future performance of sites and helping plan safety-enhancing activities. These three critical activities are routinely conducted for safety management and planning purposes in jurisdictions throughout the United States and around the world. This paper aims to develop baseline expected safety performance functions of rural signalized intersections in South Korea, which to date have not yet been established or reported in the literature. Data are examined from numerous locations within South Korea for both three-legged and four-legged configurations. The safety effects of a host of operational and geometric variables on the safety performance of these sites are also examined. In addition, supplementary tables and graphs are developed for comparing the baseline safety performance of sites with various geometric and operational features. These graphs identify how various factors are associated with safety. The expected safety prediction tables offer advantages over regression prediction equations by allowing the safety manager to isolate specific features of the intersections and examine their impact on expected safety. The examination of the expected safety performance tables through illustrated examples highlights the need to correct for regression-to-the-mean effects, emphasizes the negative impacts of multicollinearity, shows why multivariate models do not translate well to accident modification factors, and illuminates the need to examine road safety carefully and methodically. Caveats are provided on the use of the safety performance prediction graphs developed in this paper.
Resumo:
A study was done to develop macrolevel crash prediction models that can be used to understand and identify effective countermeasures for improving signalized highway intersections and multilane stop-controlled highway intersections in rural areas. Poisson and negative binomial regression models were fit to intersection crash data from Georgia, California, and Michigan. To assess the suitability of the models, several goodness-of-fit measures were computed. The statistical models were then used to shed light on the relationships between crash occurrence and traffic and geometric features of the rural signalized intersections. The results revealed that traffic flow variables significantly affected the overall safety performance of the intersections regardless of intersection type and that the geometric features of intersections varied across intersection type and also influenced crash type.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
In rural low-voltage networks, distribution lines are usually highly resistive. When many distributed generators are connected to such lines, power sharing among them is difficult when using conventional droop control, as the real and reactive power have strong coupling with each other. A high droop gain can alleviate this problem but may lead the system to instability. To overcome4 this, two droop control methods are proposed for accurate load sharing with frequency droop controller. The first method considers no communication among the distributed generators and regulates the output voltage and frequency, ensuring acceptable load sharing. The droop equations are modified with a transformation matrix based on the line R/X ration for this purpose. The second proposed method, with minimal low bandwidth communication, modifies the reference frequency of the distributed generators based on the active and reactive power flow in the lines connected to the points of common coupling. The performance of these two proposed controllers is compared with that of a controller, which includes an expensive high bandwidth communication system through time-domain simulation of a test system. The magnitude of errors in power sharing between these three droop control schemes are evaluated and tabulated.
Resumo:
The Tamborine Mt area is a popular residential and tourist area in the Gold Coast hinterland, SE Qld. The 15km2 area occurs on elevated remnant Tertiary Basalts of the Beechmont Group, which comprise a number of mappable flow units originally derived from the Tweed volcanic centre to the south. The older Albert Basalt (Tertiary), which underlies the Beechmont Basalt at the southern end of the investigation area, is thought to be derived from the Focal Peak volcanic centre to the south west. The Basalts contain a locally significant ‘un-declared’ groundwater resource, which is utilised by the Tamborine Mt community for: • domestic purposes to supplement rainwater tank supplies, • commercial scale horticulture and • commercial export off-Mountain for bottled water. There is no reticulated water supply, and all waste water is treated on-site through domestic scale WTPs. Rainforest and other riparian ecosystems that attract residents and tourist dollars to the area, are also reliant on the groundwater that discharges to springs and surface streams on and around the plateau. Issues regarding a lack of compiled groundwater information, groundwater contamination, and groundwater sustainability are being investigated by QUT, utilising funding provided by the Federal Government’s ‘Caring for our Country’ programme through SEQ Catchments Ltd. The objectives of the two year project, which started in April 2009, are to: • Characterise the nature and condition of groundwater / surface water systems in the Tamborine Mountain area in terms of the issues being raised; • Engage and build capacity within the community to source local knowledge, encourage participation, raise awareness and improve understanding of the impacts of land and water use; • Develop a stand-alone 3D Visualisation model for dissemination into the community and use as a communication tool.