954 resultados para Lysine-rich protein gene


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Resistin is a cysteine rich protein, mainly expressed and secreted by circulating human mononuclear cells. While several factors responsible for transcription of mouse resistin gene have been identified, not much is known about the factors responsible for the differential expression of human resistin.Methodology/Principal Finding: We show that the minimal promoter of human resistin lies within similar to 80 bp sequence upstream of the transcriptional start site (-240) whereas binding sites for cRel, CCAAT enhancer binding protein alpha (C/EBP-alpha), activating transcription factor 2 (ATF-2) and activator protein 1 (AP-1) transcription factors, important for induced expression, are present within sequences up to -619. Specificity Protein 1(Sp1) binding site (-276 to -295) is also present and an interaction of Sp1 with peroxisome proliferator activating receptor gamma (PPAR gamma) is necessary for constitutive expression in U937 cells. Indeed co-immunoprecipitation assay demonstrated a direct physical interaction of Sp1 with PPAR gamma in whole cell extracts of U937 cells. Phorbol myristate acetate (PMA) upregulated the expression of resistin mRNA in U937 cells by increasing the recruitment of Sp1, ATF-2 and PPAR gamma on the resistin gene promoter. Furthermore, PMA stimulation of U937 cells resulted in the disruption of Sp1 and PPAR gamma interaction. Chromatin immunoprecipitation (ChIP) assay confirmed the recruitment of transcription factors phospho ATF-2, Sp1, Sp3, PPAR gamma, chromatin modifier histone deacetylase 1 (HDAC1) and the acetylated form of histone H3 but not cRel, C/EBP-alpha and phospho c-Jun during resistingene transcription.Conclusion: Our findings suggest a complex interplay of Sp1 and PPAR gamma along with other transcription factors that drives the expression of resistin in human monocytic U937 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

I. ELECTROPHORESIS OF THE NUCLEIC ACIDS

A zone electrophoresis apparatus using ultraviolet optics has been constructed to study nucleic acids at concentrations less than 0.004%. Native DNA has a mobility about 15% higher than denatured DNA over a range of conditions. Otherwise, the electrophoretic mobility is independent of molecular weight, base composition or source. DNA mobilities change in the expected way with pH but the fractional change in mobility is less than the calculated change in charge. A small decrease in mobility accompanies an increase in ionic strength. RNA’s from various sources have mobilities slightly lower than denatured DNA except for s-RNA which travels slightly faster. The important considerations governing the mobility of nucleic acids appear to be the nature of the hydrodynamic segment, and the binding of counterions. The differences between electrophoresis and sedimentation stem from the fact that all random coil polyelectrolytes are fundamentally free draining in electrophoresis.

II. THE CYTOCHROME C/DNA COMPLEX

The basic protein, cytochrome c, has been complexed to DNA. Up to a cytochrome:DNA mass ratio of 2, a single type of complex is formed. Dissociation of this complex occurs between 0.05F and 0.1F NaCl. The complexing of cytochrome to DNA causes a slight increase in the melting temperature of the DNA, and a reduction of the electrophoretic mobility proportional to the decrease in net charge. Above a cytochrome:DNA mass ratio of 2.5, a different type of complex is formed. The results suggest that complexes such as are formed in the Kleinschmidt technique of electron microscopy would not exist in bulk solution and are exclusively film phenomena.

III. STUDIES OF THE ELECTROPHORESIS AND MELTING BEHAVIOUR OF NUCLEOHISTONES

Electrophoresis studies on reconstituted nucleohistones indicate that the electrophoretic mobility for these complexes is a function of the net charge of the complex. The mobility is therefore dependent on the charge density of the histone complexing the DNA, as well as on the histone/DNA ratio. It is found that the different histones affect the transition from native to denatured DNA in different ways. It appears that histone I is exchanging quite rapidly between DNA molecules in 0.01 F salt, while histone II is irreversibly bound. Histone III-IV enhances the capacity of non-strand separated denatured DNA to reanneal. Studies on native nucleoproteins indicate that there are no gene-sized uncomplexed DNA regions in any preparations studied.

IV. THE DISSOCIATION OF HISTONE FROM CALF THYMUS CROMATIN

Calf thymus nucleoprotein was treated with varying concentrations of NaCl. The identity of the histones associated and dissociated from the DNA at each salt concentration was determined by gel electrophoresis. It was found that there is no appreciable histone dissociation below 0.4 F NaCl. The lysine rich histones dissociate between 0.4 and 0.5 F NaCl. Their dissociation is accompanies by a marked increase in the solubility of the chromatin. The moderately lysine rich histones dissociate mainly between 0.8 and 1.1 F NaCl. There are two arginine rich histone components: the first dissociates between 0.8 F and 1.1 F NaCl, but the second class is the very last to be dissociated from the DNA (dissociation beginning at 1.0 F NaCl). By 2.0 F NaCl, essentially all the histones are dissociated.

The properties of the extracted nucleoprotein were studied. The electrophoretic mobility increases and the melting temperature decreases as more histones are dissociated from the DNA. A comparison with the dissociation of histones from DNA in NaClO4 shows that to dissociate the same class of histones, the concentration of NaCl required is twice that of NaClO4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The origin of new structures and functions is an important process in evolution. In the past decades, we have obtained some preliminary knowledge of the origin and evolution of new genes. However, as the basic unit of genes, the origin and evolution of exons remain unclear. Because young exons retain the footprints of origination, they can be good materials for studying origin and evolution of new exons. In this paper, we report two young exons in a zinc finger protein gene of rodents. Since they are unique sequences in mouse and rat genome and no homologous sequences were found in the orthologous genes of human and pig, the young exons might originate after the divergence of primates and rodents through exonization of intronic sequences. Strong positive selection was detected in the new exons between mouse and rat, suggesting that these exons have undergone significant functional divergence after the separation of the two species. On the other hand, population genetics data of mouse demonstrate that the new exons have been subject to functional constraint, indicating an important function of the new exons in mouse. Functional analyses suggest that these new exons encode a nuclear localization signal peptide, which may mediate new ways of nuclear protein transport. To our knowledge, this is the first example of the origin and evolution of young exons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis: Referred to as CCN, the family of growth factors consisting of cystein-rich protein 61 (CYR61, also known as CCN1), connective tissue growth factor (CTGF, also known as CCN2), nephroblastoma overexpressed gene (NOV, also known as CCN3) and WNT1-inducible signalling pathway proteins 1, 2 and 3 (WISP1, -2 and -3; also known as CCN4, -5 and -6) affects cellular growth, differentiation, adhesion and locomotion in wound repair, fibrotic disorders, inflammation and angiogenesis. AGEs formed in the diabetic milieu affect the same processes, leading to diabetic complications including diabetic retinopathy. We hypothesised that pathological effects of AGEs in the diabetic retina are a consequence of AGE-induced alterations in CCN family expression.

Materials and methods: CCN gene expression levels were studied at the mRNA and protein level in retinas of control and diabetic rats using real-time quantitative PCR, western blotting and immunohistochemistry at 6 and 12 weeks of streptozotocin-induced diabetes in the presence or absence of aminoguanidine, an AGE inhibitor. In addition, C57BL/6 mice were repeatedly injected with exogenously formed AGE to establish whether AGE modulate retinal CCN growth factors in vivo.

Results: After 6 weeks of diabetes, Cyr61 expression levels were increased more than threefold. At 12 weeks of diabetes, Ctgf expression levels were increased twofold. Treatment with aminoguanidine inhibited Cyr61 and Ctgf expression in diabetic rats, with reductions of 31 and 36%, respectively, compared with untreated animals. Western blotting showed a twofold increase in CTGF production, which was prevented by aminoguanidine treatment. In mice infused with exogenous AGE, Cyr61 expression increased fourfold and Ctgf expression increased twofold in the retina.

Conclusions/interpolation: CTGF and CYR61 are downstream effectors of AGE in the diabetic retina, implicating them as possible targets for future intervention strategies against the development of diabetic retinopathy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Squamous cell carcinoma accounts for 20% of all human lung cancers and is strongly linked to cigarette smoking. It develops through premalignant changes that are characterized by high levels of keratin 14 (K14) expression in the airway epithelium and evolve through basal cell hyperplasia, squamous metaplasia and dysplasia to carcinoma in situ and invasive carcinoma. In order to explore the impact of K14 in the pulmonary epithelium that normally lacks both squamous differentiation and K14 expression, human keratin 14 gene hK14 was constitutively expressed in mouse airway progenitor cells using a mouse Clara cell specific 10 kDa protein (CC10) promoter. While the lungs of CC10-hK14 transgenic mice developed normally, we detected increased expression of K14 and the molecular markers of squamous differentiation program such as involucrin, loricrin, small proline-rich protein 1A, transglutaminase 1 and cholesterol sulfotransferase 2B1. In contrast, wild-type lungs were negative. Aging CC10-hK14 mice revealed multifocal airway cell hyperplasia, occasional squamous metaplasia and their lung tumors displayed evidence for multidirectional differentiation. We conclude that constitutive expression of hK14 initiates squamous differentiation program in the mouse lung, but fails to promote squamous maturation. Our study provides a novel model for assessing the mechanisms of premalignant lesions in vivo by modifying differentiation and proliferation of airway progenitor cells. © The Author 2008. Published by Oxford University Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La régulation de l’expression des gènes est ce qui permet à nos cellules de s’adapter à leur environnement, de combattre les infections ou, plus généralement, de produire la quantité exacte de protéine nécessaire pour répondre à un besoin spécifique. Parmi les joueurs les plus importants dans cette régulation de l’expression des gènes on retrouve les microARN (miARN). Ces petits ARN de 22 nucléotides sont présents chez la majorité des espèces multicellulaires et sont responsables du contrôle direct de plus de 30% des gènes exprimant des protéines chez les vertébrés. La famille de miARN lethal-7 (let-7) est composée de miARN parmi les plus connus et ayant des fonctions cruciales pour la cellule. La régulation du niveau des miARN let-7 est essentielle au bon développement cellulaire. La biogenèse de ces miARN, du transcrit primaire jusqu’à leur forme mature, est régulée principalement par Lin28, une protéine pluripotente très conservée. Cette protéine est composée d’un domaine cold shock (CSD) et de deux domaines de liaison au zinc. C’est grâce à ces domaines de liaison à l’ARN que Lin28 peut lier et inhiber la maturation des miARN let-7. L’objectif de cette thèse est de caractériser l’interaction entre Lin28 et le microARN précurseur let-7g afin de mieux comprendre le rôle de cette protéine dans l’inhibition de la biogenèse du miARN. À l’aide de techniques biochimiques et biophysiques, nous avons d’abord défini les principaux déterminants de l’interaction entre Lin28 et la boucle terminale du miARN précurseur let-7g (TL-let-7g). Nous avons conclu que le domaine C-terminal de Lin28, composé d’un motif riche en lysines et arginines ainsi que de deux motifs de liaison au zinc, permet à la protéine de lier spécifiquement et avec haute affinité un renflement riche en guanine conservé chez les précurseurs de la famille let-7. Aussi, parce que la séquence et la spécificité de liaison à l’ARN de ce domaine C-terminal sont semblables à celles de la protéine NCp7 du VIH, nous avons défini ce dernier comme le domaine NCp7-like de Lin28. Par la suite, nous avons caractérisé la multimérisation de trois protéines Lin28 sur la boucle terminale de pre-let-7g. Ceci a permis de réconcilier d’apparentes contradictions retrouvées dans la littérature actuelle concernant les sites de liaison de Lin28 lors de sa liaison aux miARN précurseurs. Nous avons identifié trois sites de liaison à haute affinité sur TL-let-7g qui sont liés dans un ordre précis par trois protéines Lin28. Lors de la formation du complexe multimérique, le CSD permet une déstabilisation de l’ARN, ce qui rend accessible plusieurs sites de liaison. Le domaine NCp7-like permet plutôt un assemblage ordonné de la protéine et facilite la liaison initiale de cette dernière. Ces nouveaux résultats rendent possible la mise au point d’un nouveau modèle de l’interaction entre Lin28 et le miARN précurseur let-7g. En conclusion, les études réalisées dans cette thèse apportent une meilleure compréhension des mécanismes moléculaires impliqués dans la régulation post-transcriptionnelle d’une importante famille de miARN et permettront de guider les futures études dans le domaine de recherche en pleine effervescence qu’est celui de la biogenèse des miARN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insect oocytes grow in close association with the ovarian follicular epithelium (OFE), which escorts the oocyte during oogenesis and is responsible for synthesis and secretion of the eggshell. We describe a transcriptome of OFE of the triatomine bug Rhodnius prolixus, a vector of Chagas disease, to increase our knowledge of the role of FE in egg development. Random clones were sequenced from a cDNA library of different stages of follicle development. The transcriptome showed high commitment to transcription, protein synthesis, and secretion. The most abundant cDNA was a secreted (S) small, proline-rich protein with maximal expression in the vitellogenic follicle, suggesting a role in oocyte maturation. We also found Rp45, a chorion protein already described, and a putative chitin-associated cuticle protein that was an eggshell component candidate. Six transcripts coding for proteins related to the unfolded-protein response (UPR) by were chosen and their expression analyzed. Surprisingly, transcripts related to UPR showed higher expression during early stages of development and downregulation during late stages, when transcripts coding for S proteins participating in chorion formation were highly expressed. Several transcripts with potential roles in oogenesis and embryo development are also discussed. We propose that intense protein synthesis at the FE results in reticulum stress (RS) and that lowering expression of a set of genes related to cell survival should lead to degeneration of follicular cells at oocyte maturation. This paradoxical suppression of UPR suggests that ovarian follicles may represent an interesting model for studying control of RS and cell survival in professional S cell types. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O gene Sw-5 do tomateiro confere resistência a várias espécies de tospovírus e codifica uma proteína contendo domínios de ligação a nucleotídeos e repetições ricas em leucina. Tomateiros com Sw-5 exibem reações necróticas nas folhas inoculadas com tospovírus. Estas reações e a estrutura da proteína Sw-5 indicam que a resistência ocorre por meio do reconhecimento do patógeno e desencadeamento da resposta de hipersensibilidade. A capacidade de Sw-5 de conferir resistência a tospovírus em tabaco selvagem (Nicotiana benthamiana Domin.) foi avaliada em plantas transgênicas. Uma construção com a seqüência aberta de leitura de Sw-5 e sua região 3 não-traduzida sob controle do promotor 35S do CaMV foi utilizada para transformação de N. benthamiana via Agrobacterium tumefaciens. Plantas de progênies R1 foram inoculadas com um isolado de tospovírus e avaliadas quanto à ocorrência de reação de hipersensibilidade e resistência à infecção sistêmica. em uma progênie com segregação 3:1 (resistente:suscetível), foi selecionada uma planta homozigota e sua progênie avaliada quanto ao espectro da resistência a tospovírus. Plantas com o transgene exibiram resposta de hipersensibilidade 48 h após a inoculação, sendo resistentes à infecção sistêmica. O fenótipo da resistência foi dependente do isolado viral e um isolado de Tomato chlorotic spot virus (TCSV) causou necrose sistêmica em todas as plantas inoculadas, enquanto que isolados de Groundnut ringspot virus (GRSV) e um isolado relacionado a Chrysanthemum stem necrosis virus (CSNV) ficaram restritos ao sítio de infecção. Comparações do espectro da resistência obtido neste trabalho com aquele observado em outros membros da família Solanaceae indicam que as vias de transdução de sinais e as respostas de defesa ativadas por Sw-5 são conservadas dentro desta família e polimorfismos genéticos nas vias de transdução de sinais ou em componentes das respostas de defesa podem resultar em diferentes níveis de resistência.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lysine-ketoglutaratc reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses L-lysine and α-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and thereafter decreasing as the kernel approaches maturity. The enzyme was extracted from the developing maize endosperm and partially purified by ammonium-sulfate precipitation, anion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Blue-Sepharose CL-6B. The preparation obtained from affinity chromatography was enriched 275-fold and had a specific activity of 411 nanomoles per minute per milligram protein. The native and denaturated enzyme is a 140 kilodalton protein as determined by polyacrylamide gel electrophoresis. The enzyme showed specificity for its substrates and was not inhibited by either aminoethyl-cysteine or glutamate. Steady-state product-inhibition studies revealed that saccharopine was a noncompetitive inhibitor with respect to α-ketoglutarate and a competitive inhibitor with respect to lysine. This is suggestive of a rapid equilibriumordered binding mechanism with a binding order of lysine, α-ketoglutarate, NADPH. The enzyme activity was investigated in two maize inbred lines with homozygous normal and opaque-2 endosperms. The pattern of lysine-ketoglutarate reductase activity is coordinated with the rate of zein accumulation during endosperm development. A coordinated regulation of enzyme activity and zein accumulation was observed in the opaque-2 endosperm as the activity and zein levels were two to three times lower than in the normal endosperm. Enzyme extracted from L1038 normal and opaque-2 20 days after pollination was partially purified by DEAE-cellulose chromatography. Both genotypes showed a similar elution pattern with a single activity peak eluted at approximately 0.2 molar KCL. The molecular weight and physical properties of the normal and opaque-2 enzymes were essentially the same. We suggest that the Opaque-2 gene, which is a transactivator of the 22 kilodalton zein genes, may be involved in the regulation of the lysine-ketoglutarate reductase gene in maize endosperm. In addition, the decreased reductase activity caused by the opaque-2 mutation may explain, at least in part, the elevated concentration of lysine found in the opaque-2 endosperm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The simultaneous existence of alternative oxidases and uncoupling proteins in plants has raised the question as to why plants need two energy-dissipating systems with apparently similar physiological functions. A probably complete plant uncoupling protein gene family is described and the expression profiles of this family compared with the multigene family of alternative oxidases in Arabidopsis thaliana and sugarcane (Saccharum sp.) employed as dicot and monocot models, respectively. In total, six uncoupling protein genes, AtPUMP1-6, were recognized within the Arabidopsis genome and five (SsPUMP1-5) in a sugarcane EST database. The recombinant AtPUMP5 protein displayed similar biochemical properties as AtPUMP1. Sugarcane possessed four Arabidopsis AOx1-type orthologues (SsAOx1a-1d); no sugarcane orthologue corresponding to Arabidopsis AOx2-type genes was identified. Phylogenetic and expression analyses suggested that AtAOx1d does not belong to the AOx1-type family but forms a new (AOx3-type) family. Tissue-enriched expression profiling revealed that uncoupling protein genes were expressed more ubiquitously than the alternative oxidase genes. Distinct expression patterns among gene family members were observed between monocots and dicots and during chilling stress. These findings suggest that the members of each energy-dissipating system are subject to different cell or tissue/organ transcriptional regulation. As a result, plants may respond more flexibly to adverse biotic and abiotic conditions, in which oxidative stress is involved. © The Author [2006]. Published by Oxford University Press [on behalf of the Society for Experimental Biology]. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Previous knowledge of cervical lymph node compromise may be crucial to choose the best treatment strategy in oral squamous cell carcinoma (OSCC). Here we propose a set four genes, whose mRNA expression in the primary tumor predicts nodal status in OSCC, excluding tongue. Material and methods. We identified differentially expressed genes in OSCC with and without compromised lymph nodes using Differential Display RT-PCR. Known genes were chosen to be validated by means of Northern blotting or real time RT-PCR (qRT-PCR). Thereafter we constructed a Nodal Index (NI) using discriminant analysis in a learning set of 35 patients, which was further validated in a second independent group of 20 patients. Results. Of the 63 differentially expressed known genes identified comparing three lymph node positive (pN+) and three negative (pN0) primary tumors, 23 were analyzed by Northern analysis or RT-PCR in 49 primary tumors. Six genes confirmed as differentially expressed were used to construct a NI, as the best set predictive of lymph nodal status, with the final result including four genes. The NI was able to correctly classify 32 of 35 patients comprising the learning group (88.6%; p = 0.009). Casein kinase 1alpha1 and scavenger receptor class B, member 2 were found to be up regulated in pN + group in contrast to small proline-rich protein 2B and Ras-GTPase activating protein SH3 domain-binding protein 2 which were upregulated in the pN0 group. We validated further our NI in an independent set of 20 primary tumors, 11 of them pN0 and nine pN+ with an accuracy of 80.0% (p = 0.012). Conclusions. The NI was an independent predictor of compromised lymph nodes, taking into the consideration tumor size and histological grade. The genes identified here that integrate our "Nodal Index" model are predictive of lymph node metastasis in OSCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As in all metazoans, the replication-dependent histone genes of Caenorhabditis elegans lack introns and contain a short hairpin structure in the 3' untranslated region. This hairpin structure is a key element for post-transcriptional regulation of histone gene expression and determines mRNA 3' end formation, nuclear export, translation and mRNA decay. All these steps contribute to the S-phase-specific expression of the replication-dependent histone genes. The hairpin structure is the binding site for histone hairpin-binding protein that is required for hairpin-dependent regulation. Here, we demonstrate that the C. elegans histone hairpin-binding protein gene is transcribed in dividing cells during embryogenesis and postembryonic development. Depletion of histone hairpin-binding protein (HBP) function in early embryos using RNA-mediated interference leads to an embryonic-lethal phenotype brought about by defects in chromosome condensation. A similar phenotype was obtained by depleting histones H3 and H4 in early embryos, indicating that the defects in hairpin-binding protein-depleted embryos are caused by reduced histone biosynthesis. We have confirmed this by showing that HBP depletion reduces histone gene expression. Depletion of HBP during postembryonic development also results in defects in cell division during late larval development. In addition, we have observed defects in the specification of vulval cell fate in animals depleted for histone H3 and H4, which indicates that histone proteins are required for cell fate regulation during vulval development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La semilla es el principal órgano reproductivo de las plantas espermatofitas, permitiendo la dispersión de las poblaciones y asegurando su supervivencia gracias a su tolerancia a la desecación y a su capacidad para germinar bajo condiciones ambientales óptimas. El rendimiento y valor económico de los cereales, que constituyen la primera cosecha mundial, depende, en buena medida, de la eficacia con que se acumulan en la semilla sustancias de reserva: proteínas, carbohidratos y lípidos. El principal carbohidrato acumulado en la semilla de cebada es el almidón y la fracción mayoritaria de proteínas es la de las prolaminas (solubles en etanol al 70%); estas proteínas tienen muy bajo contenido en lisina, un aminoácido esencial en la dieta de animales monogástricos. Con el fin de mejorar el valor nutricional de la semilla de cebada, se han obtenido diferentes mutantes con un mayor contenido en este aminoácido. Riso 1508 es un mutante de cebada rico en lisina cuya mutación lys3a, de efectos pleiotrópicos, segrega como un único gen mendeliano. Entre otros, presenta una reducción drástica de la expresión de algunos genes que codifican proteínas de reserva de tipo prolamina, en concreto, presenta reducida la expresión de los genes que codifican B-, C- y ϒ-Hordeínas y del inhibidor de tripsina CMe, pero no tiene alterada la expresión del gen que codifica las D-Hordeínas. Este último gen carece en su promotor del motivo GLM (5’‐(G/A)TGA(G/C)TCA(T/C)‐3’), que es reconocido por factores transcripcionales bZIP. En este trabajo, el mutante de cebada Riso 1508 se ha utilizado como herramienta para profundizar en el conocimiento de la regulación génica en semillas durante las fases de la maduración y la germinación. Para ello, en una primera aproximación, se llevó a cabo un análisis transcriptómico comparando el genotipo mutante con el silvestre durante la maduración de la semilla. Además de confirmar variaciones en los genes que codifican proteínas de reserva, este análisis indicó que también estaban afectados los genes relacionados con metabolismo de carbohidratos. Por ello se decidió caracterizar la familia multigénica de sacarosas sintasa (SUSy) en cebada. Se anotaron dos nuevos genes, HvSs3 y HvSs4, cuya expresión se comparó con la de los genes HvSs1 y HvSs2, previamente descritos en el laboratorio. La expresión de los cuatro genes en tejidos diferentes y su respuesta a estreses abióticos se analizó mediante RT-qPCR. HvSs1 y HvSs2 se expresaron preferencialmente durante el desarrollo del endospermo, y HvSs1 también fue un tránscrito abundante durante la germinación. HvSs1 se indujo en hojas en condiciones de anoxia y HvSs3 por estrés hídrico, y ambos genes se indujeron por tratamientos de frío. La localización subcelular de las cuatro isoformas no fue sólo citoplásmica, sino que también se localizaron en zonas próximas a retículo endoplásmico y en la cara interna de la membrana plasmática; además, se observó una co-localización de HvSS1 con el marcador de mitocondrias. Estos datos sugieren un papel distinto aunque parcialmente solapante de las cuatro Sacarosa Sintasas de cebada, descritas hasta la fecha. Las cinéticas de expresión de los genes que codifican los TFs más importantes implicados en la regulación génica durante el desarrollo del endospermo de cebada, se analizaron por RT-qPCR en ambos genotipos, demostrando que los TFs de la clase DOF aparecieron desregulados durante todo el proceso en Riso 1508 comparado con el cv. Bomi, aunque también se observaron diferencias significativas en algunos de los que codifican bZIPs. Estudios previos indicaban que el ortólogo de BLZ2 en maíz, O2, se regula post-traduccionalmente mediante un mecanismo de fosforilación/defosforilación reversible, y que la forma defosforilada es la fisiológicamente activa. En este trabajo se demostró que BLZ2 está sujeto a este tipo de regulación y que la proteín-fosfatasa HvPP2C2 está implicada en el proceso. La interacción de HvPP2C2 y BLZ2 tiene lugar en el núcleo celular únicamente en presencia de 100 μM ABA. En el mutante Riso 1508, BLZ2 se encuentra en un estado hiperfosforilado tanto durante la maduración como durante la germinación de la semilla, lo que dificultaría la unión de BLZ2 a las secuencias GLM en los promotores de los genes que codifican B-, C-,y ϒ- Hordeínas y CMe. Summary The seed is the main reproductive organ of spermatophyte plants allowing the spread of populations and ensuring their survival through its desiccation tolerance and because of their ability to germinate under optimum environmental conditions. Yield and economic value of cereal crops, that constitute the first world crop, depend largely on the efficiency with which they accumulate in the seed reserve substances: proteins, carbohydrates and lipids. The main carbohydrate accumulated in the barley seed is starch and the major protein fraction is that of prolamins (soluble in 70% ethanol); these proteins have a very low lysine content, an essential amino-acid for the diet of monogastric animals. In order to improve the nutritional value of the barley seed, different mutants have been obtained with a higher content of this amino-acid. Riso 1508 is one lysine-rich mutant whose mutation (lys3a) segregates as a single Mendelian gene with pleiotropic effects, such as a drastic reduction of genes encoding the trypsin inhibitor CMe and the B-, C-and ϒ-hordeins, but has not altered the expression of the gene encoding the D-hordeins. This latter gene lacks in its promotor the GLM motif (5’‐(G/A)TGA(G/C)TCA(T/C)‐3’), that is recognised by bZIP transcription factors In this work we have used the barley mutant Riso 1508 as a tool for better understanding gene regulation in seeds during the maturation and germination phases. To this aim, a transcriptomic analysis was performed comparing wild and mutant genotypes during seed maturation. Besides confirming variations in the expression of genes encoding reserve proteins, this analysis indicated that some genes related with carbohydrate metabolism were also affected. It was therefore decided to characterize the multigene family of sucrose synthases (SUSy) in barley. Two new genes were annotated, HvSs3 and HvSs4, and its expression was compared with that of genes HvSs1 and HvSs2, previously described in our laboratory. The expression of the four genes in different tissues and in response to abiotic stresses was analyzed by RTqPCR. HvSs1 and HvSs2 were preferentially expressed during the development of the endosperm, and the HvSs1 transcript was also abundant upon germination. HvSs1 was induced in leaves by anoxic conditions, HvSs3 by water stress, and both genes were induced by cold treatments. The subcellular localization of all four isoforms was not only cytoplasmic, but they could be found along the endoplasmic reticulum and at the inner side of the cell membrane; HvSS1, was also associated with the mitochondrial marker. These data suggest a distinct but partially overlapping roles for the barley sucrose synthases, described so far. The expression kinetics of the genes encoding the most important TFs involved in gene regulation during barley endosperm development was analyzed by RT-qPCR in both genotypes. These data show that the genes encoding DOF TFs were mis-regulated throughout the process in Riso 1508, although significant differences were also found among some of those encoding bZIPs. Previous studies indicated that the BLZ2 orthologue in maize, O2, was post-translationally regulated by reversible phosphorylation/dephosphorylation and that the dephosphorylated protein is the physiologically active form. In this work we demostrate that BLZ2 is under a similar regulation and that the proteinphosphatase HvPP2C2 is implicated in the process. The interaction between HvPP2C2 and BLZ2 takes place in the cell nucleus only in the presence of 100 μM ABA. In the Riso 1508 mutant, BLZ2 is found in a hyperphosphorylated state in the maturation phase and upon seed germination; because of this, the BLZ2 binding to the GLM promoter sequences of genes encoding B-, C- y ϒ- Hordeins and CMe would be decreased in the mutant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prolamin box (P-box) is a highly conserved 7-bp sequence element (5′-TGTAAAG-3′) found in the promoters of many cereal seed storage protein genes. Nuclear factors from maize endosperm specifically interact with the P-box present in maize prolamin genes (zeins). The presence of the P-box in all zein gene promoters suggests that interactions between endosperm DNA binding proteins and the P-box may play an important role in the coordinate activation of zein gene expression during endosperm development. We have cloned an endosperm-specific maize cDNA, named prolamin-box binding factor (PBF), that encodes a member of the recently described Dof class of plant Cys2-Cys2 zinc-finger DNA binding proteins. When tested in gel shift assays, PBF exhibits the same sequence-specific binding to the P-box as factors present in maize endosperm nuclei. Additionally, PBF interacts in vitro with the basic leucine zipper protein Opaque2, a known transcriptional activator of zein gene expression whose target site lies 20 bp downstream of the P-box in the 22-kDa zein gene promoter. The isolation of the PBF gene provides an essential tool to further investigate the functional role of the highly conserved P-box in regulating cereal storage protein gene expression.