990 resultados para Lymphoid Organ Virus
Rainfall, Mosquito Density and the Transmission of Ross River Virus: A Time-Series Forecasting Model
Resumo:
The spatial and temporal variations of Ross River virus infections reported in Queensland, Australia, between 1985 and 1996 were studied by using the Geographic Information System. The notified cases of Ross River virus infection came from 489 localities between 1985 and 1988, 805 between 1989 and 1992, and 1,157 between 1993 and 1996 (chi2(df = 2) = 680.9; P < 0.001). There was a marked increase in the number of localities where the cases were reported by 65 percent for the period of 1989-1992 and 137 percent for 1993-1996, compared with that for 1985-1988. The geographic distribution of the notified Ross River virus cases has expanded in Queensland over recent years. As Ross River virus disease has impacted considerably on tourism and industry, as well as on residents of affected areas, more research is required to explore the causes of the geographic expansion of the notified Ross River virus infections.
Resumo:
Australian mosquitoes from which Japanese encephalitis virus (JEV) has been recovered (Culex annulirostris, Culex gelidus, and Aedes vigilax) were assessed for their ability to be infected with the ChimeriVax-JE vaccine, with yellow fever vaccine virus 17D (YF 17D) from which the backbone of ChimeriVax-JE vaccine is derived and with JEV-Nakayama. None of the mosquitoes became infected after being fed orally with 6.1 log(10) plaque-forming units (PFU)/mL of ChimeriVax-JE vaccine, which is greater than the peak viremia in vaccinees (mean peak viremia = 4.8 PFU/mL, range = 0-30 PFU/mL of 0.9 days mean duration, range = 0-11 days). Some members of all three species of mosquito became infected when fed on JEV-Nakayama, but only Ae. vigilax was infected when fed on YF 17D. The results suggest that none of these three species of mosquito are likely to set up secondary cycles of transmission of ChimeriVax-JE in Australia after feeding on a viremic vaccinee.
Resumo:
We used geographic information systems and a spatial analysis approach to explore the pattern of Ross River virus (RRV) incidence in Brisbane, Australia. Climate, vegetation and socioeconomic data in 2001 were obtained from the Australian Bureau of Meteorology, the Brisbane City Council and the Australian Bureau of Statistics, respectively. Information on the RRV cases was obtained from the Queensland Department of Health. Spatial and multiple negative binomial regression models were used to identify the socioeconomic and environmental determinants of RRV transmission. The results show that RRV activity was primarily concentrated in the northeastern, northwestern, and southeastern regions in Brisbane. Multiple negative binomial regression models showed that the spatial pattern of RRV disease in Brisbane seemed to be determined by a combination of local ecologic, socioeconomic, and environmental factors.
Resumo:
Infection of plant cells by potyviruses induces the formation of cytoplasmic inclusions ranging in size from 200 to 1000 nm. To determine if the ability to form these ordered, insoluble structures is intrinsic to the potyviral cytoplasmic inclusion protein, we have expressed the cytoplasmic inclusion protein from Potato virus Y in tobacco under the control of the chrysanthemum ribulose-1,5-bisphosphate carboxylase small subunit promoter, a highly active, green tissue promoter. No cytoplasmic inclusions were observed in the leaves of transgenic tobacco using transmission electron microscopy, despite being able to clearly visualize these inclusions in Potato virus Y infected tobacco leaves under the same conditions. However, we did observe a wide range of tissue and sub-cellular abnormalities associated with the expression of the Potato virus Y cytoplasmic inclusion protein. These changes included the disruption of normal cell morphology and organization in leaves, mitochondrial and chloroplast internal reorganization, and the formation of atypical lipid accumulations. Despite these significant structural changes, however, transgenic tobacco plants were viable and the results are discussed in the context of potyviral cytoplasmic inclusion protein function.
Resumo:
This study explored the role of donor prototype evaluations (perceptions of the typical organ donor) in organ donation communication decisions using an extended theory of planned behaviour (TPB) model. The model incorporated attitude, subjective norm, perceived behavioural control, moral norm, self-identity, and donor prototype evaluations to predict intentions to record consent on an organ donor register and discuss the organ donation decision with significant others. Participants completed surveys assessing the extended TPB constructs related to registering (n = 359) and discussing (n = 282). Results supported a role for donor prototype evaluations in predicting discussing intentions only. Both extended TPB structural equation models were a good fit to the data, accounting for 74 and 76% of the variance in registering and discussing intentions, respectively. Participants’ self-reported discussing behaviour (but not registering behaviour given low numbers of behavioural performers) was assessed 4 weeks later, with discussing intention as the only significant predictor of behaviour (Nagelkerke R2 = 0.11). These findings highlight the impact of people's perceptions of a typical donor on their decisions to discuss their organ donation preference, assisting our understanding of the factors influencing individuals' communication processes in efforts to bridge the gap between organ supply and demand.
Resumo:
We explored common beliefs and preferences for posthumous and living organ donation in Australia where organ donation rates are low and little research exists. Content analysis of discussions revealed the advantage of prolonging/saving life whereas disadvantages differed according to donation context. A range of people/groups perceived to approve and disapprove of donation were identified. Barriers for posthumous donation included a family’s objection, with the type of organ needed important for living donation. Motivators included knowledge about potential organ recipients. Donation preferences favored loved ones, with weaker preferences for recipients who were perceived as morally questionable or responsible for their illness.
Resumo:
The worldwide organ shortage occurs despite people’s positive organ donation attitudes. The discrepancy between attitudes and behaviour is evident in Australia particularly, with widespread public support for organ donation but low donation and communication rates. This problem is compounded further by the paucity of theoretically based research to improve our understanding of people’s organ donation decisions. This program of research contributes to our knowledge of individual decision making processes for three aspects of organ donation: (1) posthumous (upon death) donation, (2) living donation (to a known and unknown recipient), and (3) providing consent for donation by communicating donation wishes on an organ donor consent register (registering) and discussing the donation decision with significant others (discussing). The research program used extended versions of the Theory of Planned Behaviour (TPB) and the Prototype/Willingness Model (PWM), incorporating additional influences (moral norm, self-identity, organ recipient prototypes), to explicate the relationship between people’s positive attitudes and low rates of organ donation behaviours. Adopting the TPB and PWM (and their extensions) as a theoretical basis overcomes several key limitations of the extant organ donation literature including the often atheoretical nature of organ donation research, thefocus on individual difference factors to construct organ donor profiles and the omission of important psychosocial influences (e.g., control perceptions, moral values) that may impact on people’s decision-making in this context. In addition, the use of the TPB and PWM adds further to our understanding of the decision making process for communicating organ donation wishes. Specifically, the extent to which people’s registering and discussing decisions may be explained by a reasoned and/or a reactive decision making pathway is examined (Stage 3) with the novel application of the TPB augmented with the social reaction pathway in the PWM. This program of research was conducted in three discrete stages: a qualitative stage (Stage 1), a quantitative stage with extended models (Stage 2), and a quantitative stage with augmented models (Stage 3). The findings of the research program are reported in nine papers which are presented according to the three aspects of organ donation examined (posthumous donation, living donation, and providing consent for donation by registering or discussing the donation preference). Stage One of the research program comprised qualitative focus groups/interviews with university students and community members (N = 54) (Papers 1 and 2). Drawing broadly on the TPB framework (Paper 1), content analysed responses revealed people’s commonly held beliefs about the advantages and disadvantages (e.g., prolonging/saving life), important people or groups (e.g., family), and barriers and motivators (e.g., a family’s objection to donation), related to living and posthumous organ donation. Guided by a PWM perspective, Paper Two identified people’s commonly held perceptions of organ donors (e.g., altruistic and giving), non-donors (e.g., self-absorbed and unaware), and transplant recipients (e.g., unfortunate, and in some cases responsible/blameworthy for their predicament). Stage Two encompassed quantitative examinations of people’s decision makingfor living (Papers 3 and 4) and posthumous (Paper 5) organ donation, and for registering and discussing donation wishes (Papers 6 to 8) to test extensions to both the TPB and PWM. Comparisons of health students’ (N = 487) motivations and willingness for living related and anonymous donation (Paper 3) revealed that a person’s donor identity, attitude, past blood donation, and knowing a posthumous donor were four common determinants of willingness, with the results highlighting students’ identification as a living donor as an important motive. An extended PWM is presented in Papers Four and Five. University students’ (N = 284) willingness for living related and anonymous donation was tested in Paper Four with attitude, subjective norm, donor prototype similarity, and moral norm (but not donor prototype favourability) predicting students’ willingness to donate organs in both living situations. Students’ and community members’ (N = 471) posthumous organ donation willingness was assessed in Paper Five with attitude, subjective norm, past behaviour, moral norm, self-identity, and prior blood donation all significantly directly predicting posthumous donation willingness, with only an indirect role for organ donor prototype evaluations. The results of two studies examining people’s decisions to register and/or discuss their organ donation wishes are reported in Paper Six. People’s (N = 24) commonly held beliefs about communicating their organ donation wishes were explored initially in a TPB based qualitative elicitation study. The TPB belief determinants of intentions to register and discuss the donation preference were then assessed for people who had not previously communicated their donation wishes (N = 123). Behavioural and normative beliefs were important determinants of registering and discussing intentions; however, control beliefs influenced people’s registering intentions only. Paper Seven represented the first empirical test of the role of organ transplant recipient prototypes (i.e., perceptions of organ transplant recipients) in people’s (N = 465) decisions to register consent for organ donation. Two factors, Substance Use and Responsibility, were identified and Responsibility predicted people’s organ donor registration status. Results demonstrated that unregistered respondents were the most likely to evaluate transplant recipients negatively. Paper Eight established the role of organ donor prototype evaluations, within an extended TPB model, in predicting students’ and community members’ registering (n = 359) and discussing (n = 282) decisions. Results supported the utility of an extended TPB and suggested a role for donor prototype evaluations in predicting people’s discussing intentions only. Strong intentions to discuss donation wishes increased the likelihood that respondents reported discussing their decision 1-month later. Stage Three of the research program comprised an examination of augmented models (Paper 9). A test of the TPB augmented with elements from the social reaction pathway in the PWM, and extensions to these models was conducted to explore whether people’s registering (N = 339) and discussing (N = 315) decisions are explained via a reasoned (intention) and/or social reaction (willingness) pathway. Results suggested that people’s decisions to communicate their organ donation wishes may be better explained via the reasoned pathway, particularly for registering consent; however, discussing also involves reactive elements. Overall, the current research program represents an important step toward clarifying the relationship between people’s positive organ donation attitudes but low rates of organ donation and communication behaviours. Support has been demonstrated for the use of extensions to two complementary theories, the TPB and PWM, which can inform future research aiming to explicate further the organ donation attitude-behaviour relationship. The focus on a range of organ donation behaviours enables the identification of key targets for future interventions encouraging people’s posthumous and living donation decisions, and communication of their organ donation preference.
Resumo:
Over the past decade, plants have been used as expression hosts for the production of pharmaceutically important and commercially valuable proteins. Plants offer many advantages over other expression systems such as lower production costs, rapid scale up of production, similar post-translational modification as animals and the low likelihood of contamination with animal pathogens, microbial toxins or oncogenic sequences. However, improving recombinant protein yield remains one of the greatest challenges to molecular farming. In-Plant Activation (InPAct) is a newly developed technology that offers activatable and high-level expression of heterologous proteins in plants. InPAct vectors contain the geminivirus cis elements essential for rolling circle replication (RCR) and are arranged such that the gene of interest is only expressed in the presence of the cognate viral replication-associated protein (Rep). The expression of Rep in planta may be controlled by a tissue-specific, developmentally regulated or chemically inducible promoter such that heterologous protein accumulation can be spatially and temporally controlled. One of the challenges for the successful exploitation of InPAct technology is the control of Rep expression as even very low levels of this protein can reduce transformation efficiency, cause abnormal phenotypes and premature activation of the InPAct vector in regenerated plants. Tight regulation over transgene expression is also essential if expressing cytotoxic products. Unfortunately, many tissue-specific and inducible promoters are unsuitable for controlling expression of Rep due to low basal activity in the absence of inducer or in tissues other than the target tissue. This PhD aimed to control Rep activity through the production of single chain variable fragments (scFvs) specific to the motif III of Tobacco yellow dwarf virus (TbYDV) Rep. Due to the important role played by the conserved motif III in the RCR, it was postulated that such scFvs can be used to neutralise the activity of the low amount of Rep expressed from a “leaky” inducible promoter, thus preventing activation of the TbYDV-based InPAct vector until intentional induction. Such scFvs could also offer the potential to confer partial or complete resistance to TbYDV, and possibly heterologous viruses as motif III is conserved between geminiviruses. Studies were first undertaken to determine the levels of TbYDV Rep and TbYDV replication-associated protein A (RepA) required for optimal transgene expression from a TbYDV-based InPAct vector. Transient assays in a non-regenerable Nicotiana tabacum (NT-1) cell line were undertaken using a TbYDV-based InPAct vector containing the uidA reporter gene (encoding GUS) in combination with TbYDV Rep and RepA under the control of promoters with high (CaMV 35S) or low (Banana bunchy top virus DNA-R, BT1) activity. The replication enhancer protein of Tomato leaf curl begomovirus (ToLCV), REn, was also used in some co-bombardment experiments to examine whether RepA could be substituted by a replication enhancer from another geminivirus genus. GUS expression was observed both quantitatively and qualitatively by fluorometric and histochemical assays, respectively. GUS expression from the TbYDV-based InPAct vector was found to be greater when Rep was expected to be expressed at low levels (BT1 promoter) rather than high levels (35S promoter). GUS expression was further enhanced when Rep and RepA were co-bombarded with a low ratio of Rep to RepA. Substituting TbYDV RepA with ToLCV REn also enhanced GUS expression but more importantly highest GUS expression was observed when cells were co-transformed with expression vectors directing low levels of Rep and high levels of RepA irrespective of the level of REn. In this case, GUS expression was approximately 74-fold higher than that from a non-replicating vector. The use of different terminators, namely CaMV 35S and Nos terminators, in InPAct vectors was found to influence GUS expression. In the presence of Rep, GUS expression was greater using pInPActGUS-Nos rather than pInPActGUS-35S. The only instance of GUS expression being greater from vectors containing the 35S terminator was when comparing expression from cells transformed with Rep, RepA and REnexpressing vectors and either non-replicating vectors, p35SGS-Nos or p35SGS-35S. This difference was most likely caused by an interaction of viral replication proteins with each other and the terminators. These results indicated that (i) the level of replication associated proteins is critical to high transgene expression, (ii) the choice of terminator within the InPAct vector may affect expression levels and (iii) very low levels of Rep can activate InPAct vectors hence controlling its activity is critical. Prior to generating recombinant scFvs, a recombinant TbYDV Rep was produced in E. coli to act as a control to enable the screening for Rep-specific antibodies. A bacterial expression vector was constructed to express recombinant TbYDV Rep with an Nterminal His-tag (N-His-Rep). Despite investigating several purification techniques including Ni-NTA, anion exchange, hydrophobic interaction and size exclusion chromatography, N-His-Rep could only be partially purified using a Ni-NTA column under native conditions. Although it was not certain that this recombinant N-His-Rep had the same conformation as the native TbYDV Rep and was functional, results from an electromobility shift assay (EMSA) showed that N-His-Rep was able to interact with the TbYDV LIR and was, therefore, possibly functional. Two hybridoma cell lines from mice, immunised with a synthetic peptide containing the TbYDV Rep motif III amino acid sequence, were generated by GenScript (USA). Monoclonal antibodies secreted by the two hybridoma cell lines were first screened against denatured N-His-Rep in Western analysis. After demonstrating their ability to bind N-His-Rep, two scFvs (scFv1 and scFv2) were generated using a PCR-based approach. Whereas the variable heavy chain (VH) from both cell lines could be amplified, only the variable light chain (VL) from cell line 2 was amplified. As a result, scFv1 contained VH and VL from cell line 1, whereas scFv2 contained VH from cell line 2 and VL from cell line 1. Both scFvs were first expressed in E. coli in order to evaluate their affinity to the recombinant TbYDV N-His-Rep. The preliminary results demonstrated that both scFvs were able to bind to the denatured N-His-Rep. However, EMSAs revealed that only scFv2 was able to bind to native N-His-Rep and prevent it from interacting with the TbYDV LIR. Each scFv was cloned into plant expression vectors and co-bombarded into NT-1 cells with the TbYDV-based InPAct GUS expression vector and pBT1-Rep to examine whether the scFvs could prevent Rep from mediating RCR. Although it was expected that the addition of the scFvs would result in decreased GUS expression, GUS expression was found to slightly increase. This increase was even more pronounced when the scFvs were targeted to the cell nucleus by the inclusion of the Simian virus 40 large T antigen (SV40) nuclear localisation signal (NLS). It was postulated that the scFvs were binding to a proportion of Rep, leaving a small amount available to mediate RCR. The outcomes of this project provide evidence that very high levels of recombinant protein can theoretically be expressed using InPAct vectors with judicious selection and control of viral replication proteins. However, the question of whether the scFvs generated in this project have sufficient affinity for TbYDV Rep to prevent its activity in a stably transformed plant remains unknown. It may be that other scFvs with different combinations of VH and VL may have greater affinity for TbYDV Rep. Such scFvs, when expressed at high levels in planta, might also confer resistance to TbYDV and possibly heterologous geminiviruses.