943 resultados para Lyapunov exponents
Resumo:
Analyses of photovoltaic power generation based on Lyapunov's theorems are presented. The characteristics of the photovoltaic module and the power conditioning unit are analyzed in order to establish energy functions that assess the stability of solutions and define safe regions of operation. Furthermore, it is shown that grid-connected photovoltaic modules driven at maximum power may become unstable under normal grid transients. In such cases, stability can be maintained by allowing an operational margin defined as the energy difference between the stable and the unstable solutions of the system. Simulations show that modules cope well with grid transients when a sufficiently large margin is used.
Resumo:
Power allocation is studied for fixed-rate transmission over block-fading channels with arbitrary continuous fading distributions and perfect transmitter and receiver channel state information. Both short- and long-term power constraints for arbitrary input distributions are considered. Optimal power allocation schemes are shown to be direct applications of previous results in the literature. It is shown that the short- and long-term outage exponents for arbitrary input distributions are related through a simple formula. The formula is useful to predict when the delay-limited capacity is positive. Furthermore, this characterization is useful for the design of efficient coding schemes for this relevant channel model. © 2010 IEEE.
Resumo:
Lyapunov-like conditions that utilize generalizations of energy and barrier functions certifying Zeno behavior near Zeno equilibria are presented. To better illustrate these conditions, we will study them in the context of Lagrangian hybrid systems. Through the observation that Lagrangian hybrid systems with isolated Zeno equilibria must have a onedimensional configuration space, we utilize our Lyapunov-like conditions to obtain easily verifiable necessary and sufficient conditions for the existence of Zeno behavior in systems of this form. © 2007 IEEE.
Resumo:
Zeno behavior is a dynamic phenomenon unique to hybrid systems in which an infinite number of discrete transitions occurs in a finite amount of time. This behavior commonly arises in mechanical systems undergoing impacts and optimal control problems, but its characterization for general hybrid systems is not completely understood. The goal of this paper is to develop a stability theory for Zeno hybrid systems that parallels classical Lyapunov theory; that is, we present Lyapunov-like sufficient conditions for Zeno behavior obtained by mapping solutions of complex hybrid systems to solutions of simpler Zeno hybrid systems defined on the first quadrant of the plane. These conditions are applied to Lagrangian hybrid systems, which model mechanical systems undergoing impacts, yielding simple sufficient conditions for Zeno behavior. Finally, the results are applied to robotic bipedal walking. © 2012 IEEE.
Resumo:
This paper generalizes recent Lyapunov constructions for a cascade of two nonlinear systems, one of which is stable rather than asymptotically stable. A new cross-term construction in the Lyapunov function allows us to replace earlier growth conditions by a necessary boundedness condition. This method is instrumental in the global stabilization of feedforward systems, and new stabilization results are derived from the generalized construction.
Resumo:
Mismatched decoding theory is applied to study the error exponents (both random-coding and expurgated) and achievable rates for bit-interleaved coded modulation (BICM). The gains achieved by constant-composition codes with respect to the the usual random codes are highlighted. © 2013 IEEE.
Resumo:
We study transmission over multiple-antenna blockfading channels with imperfect channel state information at both the transmitter and receiver. Specifically, we investigate achievable rates based on the generalized mutual information. We then analyze the corresponding outage probability in the high signal-to-noise ratio regime. © 2013 IEEE.
Resumo:
Lyapunov's second theorem is an essential tool for stability analysis of differential equations. The paper provides an analog theorem for incremental stability analysis by lifting the Lyapunov function to the tangent bundle. The Lyapunov function endows the state-space with a Finsler structure. Incremental stability is inferred from infinitesimal contraction of the Finsler metrics through integration along solutions curves. © 2013 IEEE.
Resumo:
Using a phenomenological asymmetric nuclear equation of state, we obtained pressure-density isotherms of the finite nucleus Sn-112 simulated in r-space and in p-space and constructed the nuclear fragments by using the coalescence model. After correlatively analysing the fragments, the signal of critical behavior has been found and critical exponents were also extracted.
Resumo:
考虑了类人形机器人的各种不确定因素,提出了其手臂控制的新方法.基于类Lyapunov方法,设计出具有鲁棒性功能的任务空间控制器.该方法得到的控制器不但在有限确定时间内达到稳定跟踪,而且不需要雅可比矩阵求逆,对一定类型的外部干扰具有鲁棒性功能.最后通过数值仿真显示了所得结果的有效性及其应用方法.