440 resultados para Lunar eclipses.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the Moon is not shielded by a global magnetic field or by an atmosphere, solar wind plasma impinges onto the lunar surface almost unhindered. Until recently, it was assumed that almost all of the impinging solar wind ions are absorbed by the surface. However, recent Interstellar Boundary Explorer, Chandrayaan-1, and Kaguya observations showed that the interaction process between the solar wind ions and the lunar surface is more complex than previously assumed. In contrast to previous assumptions, a large fraction of the impinging solar wind ions is backscattered as energetic neutral atoms. Using the complete Chandrayaan-1 Energetic Neutral Analyzer data set, we compute a global solar wind reflection ratio of 0.16 ± 0.05 from the lunar surface. Since these backscattered neutral particles are not affected by any electric or magnetic fields, each particle's point of origin on the lunar surface can be determined in a straight-forward manner allowing us to create energetic neutral atom maps of the lunar surface. The energetic neutral atom measurements recorded by the Chandrayaan-1 Energetic Neutral Analyzer cover ˜89% of the lunar surface, whereby the lunar farside is almost completely covered. We analyzed all available energetic neutral atom measurements recorded by the Chandrayaan-1 Energetic Neutral Analyzer to create the first global energetic neutral hydrogen maps of the lunar surface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solar wind continuously flows out from the Sun, filling interplanetary space and directly interacting with the surfaces of small planetary bodies and other objects throughout the solar system. A significant fraction of these ions backscatter from the surface as energetic neutral atoms (ENAs). The first observations of these ENA emissions from the Moon were recently reported from the Interstellar Boundary Explorer (IBEX). These observations yielded a lunar ENA albedo of ˜10% and showed that the Moon reflects ˜150 metric tons of neutral hydrogen per year. More recently, a survey of the first 2.5 years of IBEX observations of lunar ENAs was conducted for times when the Moon was in the solar wind. Here, we present the first IBEX ENA observations when the Moon is inside the terrestrial magnetosheath and compare them with observations when the Moon is in the solar wind. Our analysis shows that: (1) the ENA intensities are on average higher when the Moon is in the magnetosheath, (2) the energy spectra are similar above ~0.6* solar wind energy but below there are large differences of the order of a factor of 10, (3) the energy spectra resemble a power law with a "hump" at ˜0.6 * solar wind energy, and (4) this "hump" is broader when the Moon is in the magnetosheath. We explore potential scenarios to explain the differences, namely the effects of the topography of the lunar surface and the consequences of a very different Mach number in the solar wind versus in the magnetosheath.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation of electric potential over lunar magnetized regions is essential for understanding fundamental lunar science, for understanding the lunar environment, and for planning human exploration on the Moon. A large positive electric potential was predicted and detected from single point measurements. Here, we demonstrate a remote imaging technique of electric potential mapping at the lunar surface, making use of a new concept involving hydrogen neutral atoms derived from solar wind. We apply the technique to a lunar magnetized region using an existing dataset of the neutral atom energy spectrometer SARA/CENA on Chandrayaan-1. Electrostatic potential larger than +135 V inside the Gerasimovic anomaly is confirmed. This structure is found spreading all over the magnetized region. The widely spread electric potential can influence the local plasma and dust environment near the magnetic anomaly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solar wind continuously flows out from the Sun and directly interacts with the surfaces of dust and airless planetary bodies throughout the solar system. A significant fraction of solar wind ions reflect from an object's surface as energetic neutral atoms (ENAs). ENA emission from the Moon was first observed during commissioning of the Interstellar Boundary Explorer (IBEX) mission on 3 December 2008. We present the analysis of 10 additional IBEX observations of the Moon while it was illuminated by the solar wind. For the viewing geometry and energy range (> 250 eV) of the IBEX-Hi ENA imager, we find that the spectral shape of the ENA emission from the Moon is well-represented by a linearly decreasing flux with increasing energy. The fraction of the incident solar wind ions reflected as ENAs, which is the ENA albedo and defined quantitatively as the ENA reflection coefficient RN, depends on the incident solar wind speed, ranging from ~0.2 for slow solar wind to ~0.08 for fast solar wind. The average energy per incident solar wind ion that is reflected to space is 30 eV for slow solar wind and 45 eV for fast solar wind. Once ionized, these ENAs can become pickup ions in the solar wind with a unique spectral signature that reaches 3vSW. These results apply beyond the solar system; the reflection process heats plasmas that have significant bulk flow relative to interstellar dust and cools plasmas having no net bulk flow relative to the dust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Moon appears bright in the sky as a source of energetic neutral atoms (ENAs). These ENAs have recently been imaged over a broad energy range both from near the lunar surface, by India's Chandrayaan-1 mission (CH-1), and from a much more distant Earth orbit by NASA's Interstellar Boundary Explorer (IBEX) satellite. Both sets of observations have indicated that a relatively large fraction of the solar wind is reflected from the Moon as energetic neutral hydrogen. CH-1's angular resolution over different viewing angles of the lunar surface has enabled measurement of the emission as a function of angle. IBEX in contrast views not just a swath but a whole quadrant of the Moon as effectively a single pixel, as it subtends even at the closest approach no more than a few degrees on the sky. Here we use the scattering function measured by CH-1 to model global lunar ENA emission and combine these with IBEX observations. The deduced global reflection is modestly larger (by a factor of 1.25) when the angular scattering function is included. This provides a slightly updated IBEX estimate of AH=0.11±0.06 for the global neutralized albedo, which is ˜25% larger than the previous values of 0.09±0.05, based on an assumed uniform scattering distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first observation of protons in the near-lunar (100-200 km from the surface) and deeper (near anti-subsolar point) plasma wake when the interplanetary magnetic field (IMF) and solar wind velocity (vsw) are parallel (aligned flow; angle between IMF and vsw≤10°). More than 98% of the observations during aligned flow condition showed the presence of protons in the wake. These observations are obtained by the Solar Wind Monitor sensor of the Sub-keV Atom Reflecting Analyser experiment on Chandrayaan-1. The observation cannot be explained by the conventional fluid models for aligned flow. Back tracing of the observed protons suggests that their source is the solar wind. The larger gyroradii of the wake protons compared to that of solar wind suggest that they were part of the tail of the solar wind velocity distribution function. Such protons could enter the wake due to their large gyroradii even when the flow is aligned to IMF. However, the wake boundary electric field may also play a role in the entry of the protons into the wake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a study of Lunar and Mars settlement concepts, an analysis was made of fundamental design assumptions in five technical areas against a model list of occupational and environmental health concerns. The technical areas included the proposed science projects to be supported, habitat and construction issues, closed ecosystem issues, the "MMM" issues--mining, material-processing, and manufacturing, and the human elements of physiology, behavior and mission approach. Four major lessons were learned. First it is possible to relate public health concerns to complex technological development in a proactive design mode, which has the potential for long-term cost savings. Second, it became very apparent that prior to committing any nation or international group to spending the billions to start and complete a lunar settlement, over the next century, that a significantly different approach must be taken from those previously proposed, to solve the closed ecosystem and "MMM" problems. Third, it also appears that the health concerns and technology issues to be addressed for human exploration into space are fundamentally those to be solved for human habitation of the earth (as a closed ecosystem) in the 21st century. Finally, it is proposed that ecosystem design modeling must develop new tools, based on probabilistic models as a step up from closed circuit models. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the interaction between a magnetic dipole mimicking the Gerasimovich magnetic anomaly on the lunar surface and the solar wind in a self-consistent 3-D quasi-neutral hybrid simulation where ions are modeled as particles and electrons as a charge-neutralizing fluid. Especially, we consider the origin of the recently observed electric potentials at lunar magnetic anomalies. An antimoonward Hall electric field forms in our simulation resulting in a potential difference of <300V on the lunar surface, in which the value is similar to observations. Since the hybrid model assumes charge neutrality, our results suggest that the electric potentials at lunar magnetic anomalies can be formed by decoupling of ion and electron motion even without charge separation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first direct measurement of neutral oxygen in the lunar exosphere, detected by the Chandrayaan-1 Energetic Neutral Analyzer (CENA). With the lunar surface consisting of about 60% of oxygen in number, the neutral oxygen detected in CENA's energy range (11 eV−3.3 keV) is attributed to have originated from the lunar surface, where it was released through solar wind ion sputtering. Fitting of CENA's mass spectra with calibration spectra from ground and in-flight data resulted in the detection of a robust oxygen signal, with a flux of 0.2 to 0.4 times the flux of backscattered hydrogen, depending on the solar wind helium content and particle velocity. For the two solar wind types observed, we derive subsolar surface oxygen atom densities of N0= (1.1 ± 0.3) · 107m−3 and (1.4 ± 0.4) · 107m−3, respectively, which agree well with earlier model predictions and measured upper limits. From these surface densities, we derive column densities of NC= (1.5 ± 0.5) · 1013 m−2and (1.6 ± 0.5) · 1013 m−2. In addition, we identified for the first time a helium component. This helium is attributed to backscattering of solar wind helium (alpha particles) from the lunar surface as neutral energetic helium atoms, which has also been observed for the first time. This identification is supported by the characteristic energy of the measured helium atoms, which is roughly 4 times the energy of reflected solar wind hydrogen, and the correlation with solar wind helium content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the backscattering of solar wind protons from the lunar regolith using the Solar Wind Monitor of the Sub-keV Atom Reflecting Analyzer on Chandrayaan-1. Our study focuses on the component of the backscattered particles that leaves the regolith with a positive charge. We find that the fraction of the incident solar wind protons that backscatter as protons, i.e., the proton-backscattering efficiency, has an exponential dependence on the solar wind speed that varies from ~0.01% to ~1% for solar wind speeds of 250 km/s to 550 km/s. We also study the speed distribution of the backscattered protons in the fast (~550 km/s) solar wind case and find both a peak speed at ~80% of the solar wind speed and a spread of ~85 km/s. The observed flux variations and speed distribution of the backscattered protons can be explained by a speed-dependent charge state of the backscattered particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed a new fully kinetic electrostatic simulation, HYBes, to study how the lunar landscape affects the electric potential and plasma distributions near the surface and the properties of lifted dust. The model embodies new techniques that can be used in various types of physical environments and situations. We demonstrate the applicability of the new model in a situation involving three charged particle species, which are solar wind electrons and protons, and lunar photoelectrons. Properties of dust are studied with test particle simulations by using the electric fields derived from the HYBes model. Simulations show the high importance of the plasma and the electric potential near the surface. For comparison, the electric potential gradients near the landscapes with feature sizes of the order of the Debye length are much larger than those near a flat surface at different solar zenith angles. Furthermore, dust test particle simulations indicate that the landscape relief influences the dust location over the surface. The study suggests that the local landscape has to be taken into account when the distributions of plasma and dust above lunar surface are studied. The HYBes model can be applied not only at the Moon but also on a wide range of airless planetary objects such as Mercury, other planetary moons, asteroids, and nonactive comets.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In preparation for the Russian Luna-Resurs mission we combined our compact time-of-flight mass spectrometer (TOF-MS) with a chemical pre-separation of the species by gas chromatography (GC). Coupled measurements with both instruments were successfully performed with the prototype of the mass spectrometer and a flight-like gas chromatograph. The system was tested with two test gas mixtures, a mixture of hydrocarbons and a mixture of noble gases. Due to its capability to record mass spectra over the full mass range at once with high sensitivity and a dynamic range of up to 10(6) within 1 s, the TOF-MS system is a valuable extension of the GC analytical system. Based on the measurements with calibration gases performed with the combined GC-MS prototype and under assumption of mean characteristics for the Moon's regolith, the detection limit for volatile species in a soil sample is estimated to 2.10(-10) by mass for hydrocarbons and 2.10(-9) by mass for noble gases. (C) 2015 Elsevier Ltd. All rights reserved.