216 resultados para Lumber.
Resumo:
杨树具有分布广、适应性强,在生态环境治理和解决木材短缺方面均占有重要位置。青杨(Populus cathayana Rehd.)是青杨派树种的重要成员之一,也是我国的特有种。本研究通过对不同水分梯度的干旱胁迫下青杨形态和生理生化的反应,不同pH值盐碱胁迫下不同海拔和不同气候地区的四个青杨种群在生理生态上的反应差异,以及在干旱和低温胁迫下青杨lea2, lea3组基因表达差异的研究,从形态、生理、生化和分子生物学水平系统地研究了青杨在不同逆境胁迫下的反应和青杨不同种群在盐碱胁迫下的反应差异。主要研究结果如下: 1. 青杨在干旱胁迫下的反应机制:中度和重度干旱胁迫下植株的生长受到明显抑制。表现在光合系统上青杨的净光合同化速率(A)下降,主要原因是气孔导度(gs),胞间二氧化碳浓度(Ci)下降。另外最大量子产量(Fv/Fm)、光化学猝灭效率(qP)降低反应了干旱胁迫下光合系统II(PSII)受到严重损伤, 而且非光化学猝灭效率(qN)上升,导致可利用化学能产量下降,叶绿体产生淀粉的量减少。qP降低qN上升导致产生的过量电子对光合系统的伤害造成活性氧以及丙二醛(MDA)的含量增加。超微解剖结构显示,干旱胁迫增强时,叶绿体内淀粉粒的数目减少,而且叶绿体、线粒体等细胞器中嗜锇颗粒的数目增加。为清除细胞内的活性氧,植物一般的反应是抗氧化系统酶活性增加,对青杨来讲超氧化物歧化酶(SOD), 抗坏血酸过氧化物酶(APx)活性的增加远大于过氧化物酶(POD),这显示了在青杨中SOD、APx酶在清除活性氧的作用上大于POD。另外同工酶研究结果显示这些酶活性的升高主要是由于各条同工酶带表达量的增加,而不是诱导新酶带的产生。另外,75% FC水分处理下有些指标非但没有下降,像A和有效光量子产量(Y)的值都略有增加,而且gs同时增加。另外,100% FC比75% FC细胞内淀粉粒的数目少一些,但有少量的嗜锇颗粒。这证明100% FC土壤水分也许并非最适合青杨生长。 2. 盐碱胁迫对不同海拔地区青杨种群的反应差异:青杨高海拔和低海拔种群的各种生理特性随着pH值上升都受到了很大的影响。两种群叶和根中Na+、K+ 含量, Na+/K+比率随着pH值的上升影响显著。在pH值高于10.4时高海拔种群叶和根中Na+/K+比率急剧下降但是低海拔种群中却一直维持在较高水平。两种群中MDA、脯氨酸(Proline)的含量,抗氧化系统酶的活性都受到了严重的影响,证明两个种群都属于盐碱胁迫敏感类型但是高海拔的种群对盐碱胁迫的耐性要高于低海拔。这主要是由于高海拔种群一般具有耐干旱、低温胁迫的能力,而植物的抗逆机制一般都有共通之处。 3. 盐碱胁迫对不同气候地区青杨种群的反应差异:盐碱胁迫下两种群的光合作用受到明显的抑制,具体表现在叶绿素的含量和A 显著下降。净光合速率的下降主要是由于叶片gs,Ci 值降低引起的。与湿润地区的种群相比盐碱胁迫增强时,干旱地区的种群叶绿素含量和光合能力的升高与K+离子含量增加有关。植物维持细胞质高K+/Na+值对植物的抗盐性有很重要的作用。为清除盐碱胁迫产生的活性氧,抗氧化系统酶活性增加。盐碱胁迫下干旱地区的种群在SOD、CAT 和谷胱甘肽还原酶(GR)等酶的活性均显著上升,而湿润地区种群只有谷胱甘肽氧化酶(GST)的活性明显增加,说明干旱种群的抗氧化酶系统在较高盐碱胁迫下的保护作用要强于湿润种群。这主要是由于植物抗盐碱胁迫与抗干旱胁迫在一些方面的机制是一致的,抗旱种群一般也能抵抗一定程度的盐碱胁迫。 4. 青杨lea2、lea3 基因在干旱和低温胁迫下的表达差异:通过荧光定量PCR 分析,lea2、lea3 组基因在干旱和低温胁迫下在mRNA 水平的瞬时表达量明显升高,说明了两基因在青杨耐干旱和低温胁迫上都起显著的作用。而且两基因在干旱胁迫下,表达量的升高和降低的时间近乎同步,表明两基因在干旱胁迫下对植物应急保护机制的启动都发挥着重要的作用。低温胁迫下lea3 基因在mRNA 水平上表达量显著上升的时间要早于lea2,而且lea3 基因的持续作用时间明显长于lea2 组基因,说明了低温胁迫开始时lea3基因在植物应对逆境的作用上要大于lea2 基因。 Poplars play an important role in lumber supply, and are important components of ecosystems due to their wide distribution and well adaptation. Populus cathayana Rehd., which belongs to Populus Sect. Tacamahaca Spach, is one of the most important resources of poplars and is specialist to china. In this study, different altitudes and climates populations of P. cathayana were used as experiment materials to investigate the adaptability to drought and salt-alkali stresses. And the cultures of P. cathayana were used to analyze the lea2 and 3 group genes expression when exposed to drought and low temperature stresses. The results are as follows: 1. A large set of parallel responses to drought stress: Drought stress caused pronounced growth inhibition. A decreased significantly and was mainly the result of gs and Ci down. Besides, Fv/Fm, qP decreased and that reflected the harmful effects to PSII of drought stress. In accordance with qN increasing, decreased useful energy production caused the starch numbers reduction in chloroplast. The qP up and qN down improved the levels of ROS and MDA. Starch numbers in chloroplast reduced and plastoglobuli numbers increased when soil water content decreased. To reduce ROS, the activities of SOD, APX, CAT and PPO were activated. The isozymes results show that the rising activities of the antioxidant enzymes resulted from certain isoform content increased, and not from the new band produced. Interestingly, morphological results show 100%FC maybe wasn’t the favorite water content for P. cathayana growth. 2. Effect of salt-alkali stress on morphological and physiological changes in two different altitudes populations of P. cathayana: We compared the physiological responses of two populations of Populus cathayana Rehder, originating from altitudes 2,840 m and 1,450 m. Our results demonstated that Na+ and K+ contents, and Na+/K+ ratios in leaves and roots are greatly affected by pH values. At pH 10.4, the Na+/K+ ratios in both leaves and roots sharply dropped in the higher altitude population but were always maintained at higher levels in the lower altitude population. The pH values causing maximum malondialdehyde (MDA) level, free proline content and antioxidant enzyme activities were significantly different in two populations. These results indicated that the higher altitude population exhibits greater tolerance to alkalinity stress than does the lower altitude population. 3. Morphological and physiological changes in two different climates populations of P. cathayana when exposed to salt-alkali stress. Salt-alkali stress caused pronounced inhibition of the growth and especially in photosystem. Pigments content and A decreased significantly and at the same time gs and Ci decreased too. Compared with wet climate population, the Chlorophyll content and A increased in drought climate population as pH value rising was related to the K+ content increasing. It is important to resist salt-alkali stress that the K+/Na+ ratio matained at high level in cytoplasm. To reduce ROS content, the SOD, CAT and GR activities rised significantly in drought population but only GST increased in wet population. The drought population showed higher salt-alkali tolerance than the wet population mainly resulted from the fact that drought tolerance was in accordance with salt-alkali tolerance to some extent. 4. The different expressional model of lea2 and lea3 gene when P. cathayana was exposed to drought and cold stress. RT-PCR results show both lea2 and lea3 suddenly expressed significantly in mRNA level under drought and cold stress. The expression level of two genes reached optimal level at the same time. But under cold stress, the earlier significantly rising expressional time and the longer maintained higher level time in lea3 than lea2 elucidated that lea3 may be more important than lea2 in resisting cold stress in short time in P. cathayana.
Resumo:
Pine wilt disease (PWD) is perhaps the most serious threat to pine forests worldwide. Since it´s discovery in the early XXth century by Japanese forest researchers, and the relationship with its causative agent, the pinewood nematode (PWN) Bursaphelenchus xylophilus, in the 1970s, PWD has wreaked havoc wherever it appears. Firstly in the Far East (Japan, China and Korea) and now, more recently in 1999, in the EU (Portugal). The forest sector in Portugal plays a major role in the Portuguese economy with a 12% contribution to the industrial gross domestic product, 3.2% of the gross domestic product, 10% of foreign trade and 5% of national employment. Maritime pine (Pinus pinaster) is one of the most important pine productions, and industrial activity, such as the production of wood and resin, as well as coastal protection associated with sand dunes. Also, stone pine (Pinus pinea) plays an important role in the economy with a share derived from the exports of high-quality pineon seed. Thus, the tremendous economical and ecological impact of the introduction of a pest and pathogen such as the PWN, although as far as is known, the only species susceptible to the nematode is maritime pine. Immediately following detection, the research team involved (Univ. Évora, INIAP) informed the national plant quarantine and forest authorities, which relayed the information to Brussels and the appropriate EU authorities. A task force (GANP), followed by a national program (PROLUNP) was established. Since then, national surveys have been taking place, involving MADRP (Ministry of Agriculture), the University of Évora and several private corporations (e.g. UNAC). Forest growers in the area are particularly interested and involved since the area owned by the growers organizations totals 700 000 ha, largely affected by PWD. Detection of the disease has led to serious consequences and restrictions regarding exploration and commercialization of wood. A precautionary phytosanitary strip, 3 km-wide, has been recently (2007) established surrounding the affected area. The Portuguese government, through its national program PROLUNP, has been deeply involved since 1999, and in conjunction with the EU (Permanent Phytosanitary Committee, and FVO) and committed to controlling this nematode and the potential spread to the rest of the country and to the rest of the EU. The global impact of the presence of Bursaphelenchus xylophilus or the threat of its introduction and the resulting pine wilt disease in forested areas in different parts of the world is of increasing concern economically. The concern is exacerbated by the prevailing debate on climate change and the putative impact this could have on the vulnerability of the world’s pine forests to this disease. The scientific and regulatory approach taken in different jurisdictions to the threat of pine wilt disease varies from country to country depending on the perceived vulnerability of their pine forests to the disease and/or to the economic cost due to lost trade in wood products. Much of the research surrounding pine wilt disease has been located in the northern hemisphere, especially in southern Europe and in the warmer, coastal, Asian countries. However, there is an increased focus on this problem also in those countries in the southern hemisphere where plantations of susceptible pine have been established over the years. The forestry sector in Australia and New Zealand are on “high alert” for this disease and are practicing strict quarantine procedures at all ports of entry for wood products. As well, there is heightened awareness, as there is worldwide, for the need to monitor wood packaging materials for all imported goods. In carrying out the necessary monitoring and assessment of products for B. xylophilus and its vectors substantial costs are incurred especially when decisions have to be made rapidly and regardless of whether the outcome is positive or negative. Australia’s response recently to the appearance of some dying pines in a plantation illustrated the high sensitivity of some countries to this disease. Some $200,000 was spent on the assessment in order to save a potential loss of millions of dollars to the disease. This rapid, co-ordinated response to the report was for naught, because once identified it was found not to be B. xylophilus. This illustrates the particular importance of taking the responsibility at all levels of management to secure the site and the need of a rapid, reliable diagnostic method for small nematode samples for use in the field. Australia is particularly concerned about the vulnerability of its 1million hectares of planted forests, 80% of which are Pinus species, to attack from incursions of one or more species of the insect vector. Monochamus alternatus incursions in wood pallets have been reported from Brisbane, Queensland. The climate of this part of Australia is such that the Pinus plantations are particularly vulnerable to the potential outcome of such incursions, and the state of Queensland is developing a risk management strategy and a proactive breeding programme in response to this putative threat. New Zealand has 1.6 million hectares of planted forests and 89% of the commercial forest is Pinus radiata. Although the climate where these forests are located tends to be somewhat cooler than that in Australia the potential for establishment and development of the disease in that country is believed to be high. The passage alone of 200,000 m³/year of wood packaging through New Zealand ports is itself sufficient to require response. The potential incursion of insect vectors of pinewood nematode through the port system is regarded as high and is monitored carefully. The enormous expansion of global trade and the continued use of unprocessed/inadequately-processed wood for packaging purposes is a challenge for all trading nations as such wood packaging material often harbours disease or pest species. The extent of this problem is readily illustrated by the expanding economies and exports of countries in south-east Asia. China. Japan and Korea have significant areas of forestland infested with B. xylophilus. These countries too are among the largest exporting countries of manufactured goods. Despite the attempts of authorities to ensure that only properly treated wood is used in the crating and packaging of goods B. xylophilus and/or its insect vector infested materials is being recorded at ports worldwide. This reminds us, therefore, of the ease with which this nematode pest can gain access to forest lands in new geographic locations through inappropriate use, treatment or monitoring of wood products. It especially highlights the necessity to find an alternative to using low-grade lumber for packaging purposes. Lest we should believe that all wood products are always carriers of B. xylophilus and its vectors, it should be remembered that international trade of all kinds has occurred for thousands of years and that lumber-born pests and diseases do not have worldwide distribution. Other physico-biological factors have a significant role in the occurrence, establishment and sustainability of a disease. The question is often raised as to why the whole of southern Europe doesn’t already have B. xylophilus and pine wilt disease. European countries have traded with countries that are infested with B. xylophilus for hundreds of years. Turkey is an example of a country that appears to be highly vulnerable to pine wilt disease due to its extensive forests in the warm, southern region where the vector, Monochamus galloprovincialis, occurs. However, there is no record of the presence of B. xylophilus occurring there despite the importation of substantial quantities of wood from several countries In many respects, Portugal illustrates both the challenge and the dilemma. In recent times B. xylophilus was discovered there in the warm coastal region. The research, administrative and quarantine authorities responded rapidly and B. xylophilus appears to have been confined to the region in which it was found. The rapid response would seem to have “saved the day” for Portugal. Nevertheless, it raises again the long-standing questions, how long had B. xylophilus been in Portugal before it was found? If Lisbon was the port of entry, which seems very likely, why had B. xylophilus not entered Lisbon many years earlier and established populations and the pine wilt disease? Will the infestation in Portugal be sustainable and will it spread or will it die out within a few years? We still do not have sufficient understanding of the biology of this pest to know the answers to these questions.
Resumo:
An experimental and Finite Element study was performed on the bending behaviour of wood beams of the Pinus Pinaster species repaired with adhesively-bonded carbon–epoxy patches, after sustaining damage by cross-grain failure. This damage is characterized by crack growth at a small angle to the beams longitudinal axis, due to misalignment between the wood fibres and the beam axis. Cross-grain failure can occur in large-scale in a wood member when trees that have grown spirally or with a pronounced taper are cut for lumber. Three patch lengths were tested. The simulations include the possibility of cohesive fracture of the adhesive layer, failure within the wood beam in two propagation planes and patch interlaminar failure, by the use of cohesive zone modelling. The respective cohesive properties were estimated either by an inverse method or from the literature. The comparison with the tests allowed the validation of the proposed methodology, opening a good perspective for the reduction of costs in the design stages of these repairs due to extensive experimentation.
Resumo:
In March 1931, Captain Bruce Angus was sent to Sarnia by Gordon C. Leitch, general manager of Toronto Elevators. He was sent to inspect the Sarnian to ensure it was still seaworthy. Leitch was a savvy business man, who had been active in the business community for a number of years. Leitch began his career with a partner in the lumber business. When that went under he moved into graineries and worked for the Winnipeg Wheat Pool for 12 years. After Winnipeg he moved to Toronto, which was closer to his home town of Ridgetown, Ontario. In Toronto Leitch became manager of the Toronto branch of the Canadian Wheat Pool. While managing the wheat pools in Toronto Leitch became aware of huge costs associated with shipping the grains from the praries into the Toronto area. He felt that there was no need for such costs and decided to do something to make them better and cheaper for the business. Originally the grain was loaded onto Lakers that would bring the grain from the praries to Lake Huron and Georgian Bay. It was stored there until needed by the Toronto graineries and then hauled across land by either truck or train. The land journey was the most expensive and the one which Leitch wanted to eliminate. This was a fine plan except for 2 obstacles that were quickly overcome. First of all the Welland canals were not large enough to accommodate the large carriers that were bringing in the grain. This was changing as the expansion and widening of the canals was already underway. The second issue was the lack of storage in Toronto for the grain. The grain elevators had been destroyed by fire in the late 1880s and never replaced. Leitch propsed his company built its own storage elevators along the water front to allow not only for easier access to the grain, and more timely production of products. The elevators would aslo create a reduction in shipping costs and an overall more competitoive price for the customers of the grainery. The company refused, so Leitch went elsewhere to friends and contacts within the grain industry. The elevators were built and Leitch quit his job with the Canadian Wheat Pool and became the general manager of the elevators. Although the elevators were built and ready for storage the next issue was filling them. None of the carriers wanted to do business with Leitch because the competition in Georgian Bay threatened to cancel their contracts if they did. Leitch saw no way around this, but to provide his own transportation. This is when he sent Captain Bruce Angus to scout out potential ships. The ship was purchased for $37,000 and after another $30,000 was spent to fix it up, it was ready for business. The need for transportation and the finding of a seaworthy ship, lead to the beginnings of the Northland Steamship Company. The Sarnian proved to not be enough for the business underway. Leitch decided another ship was necessary. He joined forces with James Norris the owner of the Norris Grain Company. He proposed they join forces to create a more economical means of transportating their products.
Resumo:
The site of present-day St. Catharines was settled by 3000 United Empire Loyalists at the end of the 18th century. From 1790, the settlement (then known as "The Twelve") grew as an agricultural community. St. Catharines was once referred to Shipman's Corners after Paul Shipman, owner of a tavern that was an important stagecoach transfer point. In 1815, leading businessman William Hamilton Merritt abandoned his wharf at Queenston and set up another at Shipman's Corners. He became involved in the construction and operation of several lumber and gristmills along Twelve Mile Creek. Shipman's Corners soon became the principal milling site of the eastern Niagara Peninsula. At about the same time, Merritt began to develop the salt springs that were discovered along the river which subsequently gave the village a reputation as a health resort. By this time St. Catharines was the official name of the village; the origin of the name remains obscure, but is thought to be named after Catharine Askin Robertson Hamilton, wife of the Hon. Robert Hamilton, a prominent businessman. Merritt devised a canal scheme from Lake Erie to Lake Ontario that would provide a more reliable water supply for the mills while at the same time function as a canal. He formed the Welland Canal Company, and construction took place from 1824 to 1829. The canal and the mills made St. Catharines the most important industrial centre in Niagara. By 1845, St. Catharines was incorporated as a town, with the town limits extending in 1854. Administrative and political functions were added to St. Catharines in 1862 when it became the county seat of Lincoln. In 1871, construction began on the third Welland Canal, which attracted additional population to the town. As a consequence of continual growth, the town limits were again extended. St. Catharines attained city status in 1876 with its larger population and area. Manufacturing became increasingly important in St. Catharines in the early 1900s with the abundance of hydro-electric power, and its location on important land and water routes. The large increase in population after the 1900s was mainly due to the continued industrialization and urbanization of the northern part of the city and the related expansion of business activity. The fourth Welland Canal was opened in 1932 as the third canal could no longer accommodate the larger ships. The post war years and the automobile brought great change to the urban form of St. Catharines. St. Catharines began to spread its boundaries in all directions with land being added five times during the 1950s. The Town of Merritton, Village of Port Dalhousie and Grantham Township were all incorporated as part of St. Catharines in 1961. In 1970 the Province of Ontario implemented a regional approach to deal with such issues as planning, pollution, transportation and services. As a result, Louth Township on the west side of the city was amalgamated, extending the city's boundary to Fifteen Mile Creek. With its current population of 131,989, St. Catharines has become the dominant centre of the Niagara region. Source: City of St. Catharines website http://www.stcatharines.ca/en/governin/HistoryOfTheCity.asp (January 27, 2011)
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the canal in the Village of Welland. Identified structures and features associated with the Canal include the towing path, the old canal, the aqueduct lock, the new aqueduct, the old aqueduct, Lock Tenders House, a waste weir, culvert, covered drain, drain, dam, flume, and the canal's New Line. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks are also identified and include bridges, roads, and streets (ex. Division Street and Main Street), Chippewa Creek, Mill Pond, Mill Race, Court House and Gaol, Seeley (Seely) and Dunlop Saw Mill, Seeley (Seely) and Dunlop (Burnt) Grist Mill, Montrose Grist Mill, M. Caferty (Cafferty) City Hotel, Welland House by Wilkerson, Eli Mead Wharf Lot, A. Sherwood Wharf Lot, D. P. Myers Store, M. Cook Grist Mill, A. H. Cosby Saw Mill, Betts Lumber Yard, T. Quinn Tavern, a Carding Mill, shed, several barns, a hotel, and several structures or properties belonging to: J. P Evans, W. A. Phillips, S. Hampton, M. Silverthorne, D. McEwing, W. B. Hendershott (Hendershot), T. Burgar, J. Brookfield, A. Hendershott, Joseph Burgar, C. Demrie, M. Cafferty, J. Spencer, Mrs. Curran, John Lemon, D. Cooper, H. A. Rose, J. Bridges, A. Chapman, and R. Morewood. A structure belonging to a D. McKelly or McKully, and a store belonging to a J. Fino or Finn are also present. Properties and property owners of note are: Lots 247 and 248 of the Thorold Township, 5th Concession Lots 26 and 25 of the Crowland Township, Smith Shotwell, Eli Mead, D. P Myers, Donaldson, McFarland, Mrs. Silverthorne, Price, and Griffth. A County Court House Lot containing the Court House, Gaol and Gaol Yard is present.
Resumo:
Henry Haight Collier, was born in Howard, Steuben County, N. Y., November 28, 1818. His father, Richard Collier, was from Green County, in the same State. His grandfather, Isaac Collier, and his great-grandfather were originally from England. His mother, Mary Haight, was of Dutch origin. In 1835, Henry went to St. Catharines, where his elder brother, Richard Collier, resided. He spent two years at Grantham Academy, and then returned to Steuben County, to read law in Bath, with Edward Howell, and subsequently with Hammond and Campbell. Mr. Collier never opened a law office. He studied law for two years and in 1839 he went to Texas where he was connected with the State and Treasury Departments. In 1845 Mr. Collier returned to St. Catharines and opened a general store called St. Catharines Agricultural Works with his brother. The store remained open until May, 1877. He added the manufacturing of lumber in 1850, and manufacturing of agricultural implements in 1869. He built one of the first saw mills on the canal, on Lock No. 5, in St. Catharines. In July, 1877, he was appointed Collector of Customs. He became a Village Councilor for St. Paul’s Ward in 1859, and held that office from fifteen to twenty years. He was Deputy Reeve and member of the County Council for two terms. He was the Mayor of St. Catharines in 1872 and 1873. He was also Chairman of the Board of Water Commissioners of the city, during the time that the works were being built. He was a Justice of the Peace for twenty years or more. Mr. Collier was affiliated with the Reform Party and he was a Knight Templar in the Masonic fraternity and an Odd Fellow. He was also active in the Methodist Church. On June 1, 1858, he married Cornelia, daughter of Moses Cook, of "Westchester Place," St. Catharines, and had a daughter and son. Mary J. (married name: Mrs. Frank Camp) was a graduate of the Female Seminary at Hamilton, and Henry Herbert was a student in the University of Toronto. Henry H. Collier died on July 15, 1895 and is buried in Victoria Lawn Cemetery, St. Catharines, Ontario. Sources: www.accessgeneology.com "Historical Profiles from Victoria Lawn Cemetery" by Paul E. Lewis "Sincerely Lamented St. Catharines Obituaries 1817-1918" by Paul Hutchison
Resumo:
A vignette of the residence of John McDonagh, Esq., Lumber Merchant, Thorold.
Resumo:
The St. Catharines and District Labour Council was founded in May 1957 by unionized workers from St. Catharines, Thorold, Merritton, Port Dalhousie and Grimsby. They sought to improve the social and economic welfare of workers; promote the organization of workers into unions for their mutual benefit, regardless of race, creed, colour, or national origin; encourage the sale of union-made goods and services; promote worker education; provide workers with a voice in politics; and safeguard the democratic nature of the labour movement. The Council, affiliated with both the Canadian Labour Congress and the Ontario Federation of Labour, was instrumental in assisting local workers with their labour disputes, including Canadian Pulp and Paper workers at Abitibi Provincial Paper in Thorold [1975-76], and Gallaher Paper [1999], workers at the St. Catharines Eaton’s store [1985], as well as smaller disputes such as that between the part-time secretarial staff and the Welland County Roman Catholic Separate School Board [1972] and workers of the Skyway Lumber Company [1972]. The Council also assisted the community at large by offering a Community Counseling Service [1971-1976] to help citizens with issues concerning various government agencies, social services and Acts, such as the Vacation Pay Act, Landlord and Tenant Act, Employment Standards Act, unemployment insurance claims and workman’s compensation claims. Other projects that the Council organized included an annual Education Institute [1958-1965] and the annual publication of Labour Review, a summary of the Council’s past year. The Labour Council continued to operate until 2010, when several local Labour Councils merged to form the Niagara Regional Labour Council.
Resumo:
Daniel Clendenan (1793-1866) was the son of Abraham Clendenan, a private in Butler’s Rangers. He was married to Susan[na] [Albrecht ] Albright, daughter of Amos Albright. Daniel and Susan[na] had twelve children and belonged to the Disciple Church. In 1826 Daniel Clendenan purchased Part lot 14, Concession 6, Louth Township from Robert Roberts Loring. On this property he built a home and conducted the business of blacksmithing and along with William Jones operated a lumber mill. Volume 1 and the first part of Volume 2 are Daniel Clendenan’s account books. Daniel and his wife Susan are buried in the Vineland Mennonite cemetery. Daniel and Susan[na]’s youngest daughter, Sarah, married widower Andrew Thompson (1825-1901), son of Charles and grandson of Solomon. Andrew Thompson had settled in the Wainfleet area in 1854 and had owned a mill in Wellandport. Daniel Clendenan, in ill health, passed ownership of Lot 14, Concession 6, Louth Township to his son-in-law Andrew Thompson. Robert Roberts Loring, the original owner of lot 14, concession 6 in Louth was born in September of 1789 in England. He joined the 49th Regiment of Foot as an ensign in December of 1804 and arrived in Quebec the following July. He served with Isaac Brock and Roger Sheaffe. In 1806 he was promoted to lieutenant. Loring was hired by Lieutenant General Gordon Drummond and accompanied him to Ireland in 1811, but the outbreak of war in the States in 1812 drew Loring back to Canada. On June 26, 1812 Loring became a captain in the 104th Regiment of Foot. On October 29 of the same year, he was appointed aide-de-camp to Sheaffe who was the administrator of Upper Canada. During the American attack on York in April 1813, Loring suffered an injury to his right arm from which he never recovered. In December of 1813, Drummond assumed command of the forces in Upper Canada and he appointed Loring as his aide-de-camp, later civil secretary and eventually his personal secretary. Loring was with Drummond in 1813 at the capture of Fort Niagara (near Youngstown), N.Y. He was also with Drummond in the attacks on Fort Niagara, settlements along the American side of the Niagara River, and then York and Kingston. In July of 1814 he was promoted to brevet major, however he was captured at the Battle of Lundy’s Lane and he spent the remainder of the conflict in Cheshire, Massachusetts. One of his fellow captives was William Hamilton Merritt. Loring remained in the army and had numerous military posts in Canada and England. He retired in 1839 and lived the last of his years in Toronto. He died on April 1, 1848. Sources: http://www.biographi.ca/en/bio/loring_robert_roberts_7E.html and “Loring, Robert Roberts” by Robert Malcomson in The Encyclopedia Of the War Of 1812 edited by Spencer Tucker, James R. Arnold, Roberta Wiener, Paul G. Pierpaoli, John C. Fredriksen
Resumo:
The Ontario Forest Industries Association (OFIA) was founded in 1944. It is a provincial trade association that represents member companies who produce a wide range of products, including pulp, paper, paperboard, lumber, panelboard, plywood and veneer. The OFIA works with its member companies to address issues of common interest and concern, and communicates these issues to the appropriate government, industrial or business sector. The Ontario Forest Information Service represented the OFIA from 1951 to 1988 as the publishers of their industry periodicals. Bush News was the first periodical published by the Service for the OFIA and ran until 1964, when it was replaced by Ontario Logger. In 1968, the name was changed to The Logger. In 1970, this was replaced by The Forest Scene. This new periodical was a departure from the earlier versions, which had served primarily as an internal communication system for the industry. The Forest Scene adopted a new format and editorial approach, emphasizing outdoor activities, recreation, hunting and fishing, conservation, and forestry operations and methods, thus appealing to a much wider readership. The Forest Scene ceased publication in 1988.
Resumo:
Instrument of protest from Edward Barrori Palmer, Notary Public of Oakville regarding a protest by Samuel Sutherland, Master of the schooner Elizabeth and Charles McEacherin, mate. The schooner belonged to the Port of Niagara. It set sail from Port Credit to the Port of Niagara. On the 15th day of May there was a violent storm. On the 16th day of May, part of the deck and cargo consisting of lumber went overboard. The mainsail was lost and the jib was split due to the wind. All losses and damages should be borne by the merchants and whomever else it concerned and not by or through the insufficiency of the schooner of neglect by the officers and mariners. This is a 2 ½ page handwritten document, May 16, 1837.
Resumo:
Letter from Thomas H. Johnson, Assistant Commissioner of the Department of Crown Lands to Samuel D. Woodruff acknowledging receipt of payment for lumber lands no. 192 and 198, Oct. 16, 1872.
Resumo:
Indenture of memorandum of an agreement between S.D. Woodruff of St. Catharines and James L. Burton and M. Burton, both of Barrie, trading under the name of Burton and Bro. that Burton and Bro. would buy all the pine timber located in berths 192 and 198. Burton and Bro. agrees to have all timber cut. The agreement is signed by S.D. Woodruff and Burton and Bro. This document is badly burned along the left hand side. This does not affect the text, July 11, 1877.
Resumo:
Letter to S.D. Woodruff from F.B. Day acknowledging receipt of the $36.00 and reporting on the lumber that is still standing in berths 192 and 198, May 31, 1878.