994 resultados para Loop-mediated isothermal amplificiation
Resumo:
Lactobacillus reuteri BR11 possesses an abundant cystine uptake (Cyu) ABC-transporter that was previously found to be involved in a novel mechanism of oxidative defence mediated by cystine. The current study aimed to elucidate this mechanism with a focus on the role of the co-transcribed cystathionine ã-lyase (Cgl). Growth studies of wild-type L. reuteri BR11 and mutants inactivated in cgl and the cystine-binding protein encoding gene cyuC showed that in contrast to the Cyu transporter, whose inactivation led to growth arrest in aerated cultures, Cgl is not crucial for oxidative defence. However, the role of Cgl in oxidative defence became apparent in the presence of severe oxidative damage and cysteine deprivation. Cysteine was found to be protective against oxidative stress, and the action of Cgl in both cysteine biosynthesis and degradation poses a seemingly futile pathway that deprives the intracellular cysteine pool. To further characterise the relationship between Cgl activity and cysteine and their roles in oxidative defence, enzymatic assays were performed on purified Cgl, and intracellular concentrations of cysteine, cystathionine and methionine were determined. Cgl was highly active towards cystine and cystathionine and less active towards cysteine in vitro, suggesting the main function of Cgl to be cysteine biosynthesis. Cysteine was found at high concentrations in the cell, but the levels were not significantly affected by inactivation of cgl or growth under aerobic conditions. It was concluded that both anabolic and catabolic activities of Cgl towards cysteine contribute to oxidative defence, the former by maintaining an intracellular reservoir of thiol analogous to glutathione, and the latter by producing H2S which is readily secreted, thus creating a reducing extracellular environment. The significance of the Cyu transporter to the physiology of L. reuteri BR11 prompted a phylogenetic study to determine its presence in bacteria. Orthologs of the Cyu transporter that are closest matches to the Cyu transporter are only limited to several species of Lactobacillus and Leuconostoc. Outside the Lactobacillales order, the closest matching orthologs belong to Proteobacteria, and there are more orthologs in Proteobacteria than non-Lactobacillales Firmicutes, suggesting that the Cyu transporter locus was present in the ancestor of the Proteobacteria and Firmicutes, and over evolutionary time has been lost or diverged in many Firmicutes. The clustering of the Cyu transporter locus with a gene encoding a Cgl family protein is even rarer. It was only found in L. reuteri, Lactobacillus vaginalis, Weissella paramesenteroides, the Lactobacillus casei group, and several Campylobacter sp. An accompanying phylogenetic study of L. reuteri BR11 using multi-locus sequence analysis showed that L. reuteri BR11 had diverged from more than 100 strains of L. reuteri isolated from various hosts and geographical locations. However, comparison with other Lactobacillus species supported the current classification of BR11 as L. reuteri. The most closely related species to L. reuteri is L. vaginalis or Lactobacillus antri, depending on the housekeeping gene used for analysis. The close evolutionary relationship of L. vaginalis to L. reuteri and the high degree of sequence identity between the cgl-cyuABC loci in both species suggest that the Cyu system is highly likely to perform similar functions in L. vaginalis. In search of other genes that function in oxidative defence, a number of mutants which were inactivated in genes that confer increased resistance to oxidative stress in other bacteria were constructed. The genes targeted were ahpC (peroxidase component of the alkyl hydroperoxide reductase system), tpx (thiol peroxidase), osmC (osmotically induced protein C), mntH (Mn2+/Fe2+ transporter), gshA (ã-glutamylcysteine synthetase) and msrA (methionine sulfoxide reductase). The ahpC and mntH mutants had slightly lower minimum inhibitory concentrations of organic peroxides, suggesting these genes might be involved in resistance to organic peroxides in L. reuteri. However, none of the mutants exhibited growth defects in aerated cultures, in stark contrast to the cyuC mutant. This may be due to compensatory functions of other genes, a hypothesis which cannot be tested until a robust protocol for constructing markerless multiple gene deletion mutants in L. reuteri is developed. These results highlight the importance of the Cyu transporter in oxidative defence and provide a foundation for extending the research of this system in other bacteria.
Resumo:
In vitro cardiovascular device performance evaluation in a mock circulation loop (MCL) is a necessary step prior to in vivo testing.A MCL that accurately represents the physiology of the cardiovascular system accelerates the assessment of the device’s ability to treat pathological conditions. To serve this purpose, a compact MCL measuring 600 ¥ 600 ¥ 600 mm (L ¥ W¥ H) was constructed in conjunction with a computer mathematical simulation.This approach allowed the effective selection of physical loop characteristics, such as pneumatic drive parameters, to create pressure and flow, and pipe dimensions to replicate the resistance, compliance, and fluid inertia of the native cardiovascular system. The resulting five-element MCL reproduced the physiological hemodynamics of a healthy and failing heart by altering ventricle contractility, vascular resistance/compliance, heart rate, and vascular volume. The effects of interpatient anatomical variability, such as septal defects and valvular disease, were also assessed. Cardiovascular hemodynamic pressures (arterial, venous, atrial, ventricular), flows (systemic, bronchial, pulmonary), and volumes (ventricular, stroke) were analyzed in real time. The objective of this study is to describe the developmental stages of the compact MCL and demonstrate its value as a research tool for the accelerated development of cardiovascular devices.
Resumo:
Background: Up to fifty percent of alcohol dependent individuals have alexithymia, a personality trait characterised by difficulties identifying and describing feelings, a lack of imagination and an externalised cognitive style. Although studies have examined alexithymia in relation to alcohol dependence, no research exists on mechanisms underlying this relationship. The present study examined the mediational effect of alcohol expectancies on alexithymia and alcohol dependence.----- ----- Methods: 230 outpatients completed the Toronto Alexithymia Scale (TAS-20), the Drinking Expectancy Questionnaire (DEQ) and the Alcohol Use Disorder Identification Test (AUDIT). Results: Regression analysis showed that alexithymia and alcohol dependence was, in two of three cases, partially mediated through alcohol expectancy.----- ----- Conclusions: Alcohol expectancies of assertion and affective change show promise as mediators of alcohol dependence in individuals with alexithymia.
Resumo:
The city of Scottsdale Arizona implemented the first fixed photo Speed Enforcement camera demonstration Program (SEP) on a US freeway in 2006. A comprehensive before-and-after analysis of the impact of the SEP on safety revealed significant reductions in crash frequency and severity, which indicates that the SEP is a promising countermeasure for improving safety. However, there is often a trade off between safety and mobility when safety investments are considered. As a result, identifying safety countermeasures that both improve safety and reduce Travel Time Variability (TTV) is a desirable goal for traffic safety engineers. This paper reports on the analysis of the mobility impacts of the SEP by simulating the traffic network with and without the SEP, calibrated to real world conditions. The simulation results show that the SEP decreased the TTV: the risk of unreliable travel was at least 23% higher in the ‘without SEP’ scenario than in the ‘with SEP’ scenario. In addition, the total Travel Time Savings (TTS) from the SEP was estimated to be at least ‘569 vehicle-hours/year.’ Consequently, the SEP is an efficient countermeasure not only for reducing crashes but also for improving mobility through TTS and reduced TTV.
Resumo:
Background: In order to maintain cellular viability and genetic integrity cells must respond quickly following the induction of cytotoxic double strand DNA breaks (DSB). This response requires a number of processes including stabilisation of the DSB, signalling of the break and repair. It is becoming increasingly apparent that one key step in this process is chromatin remodelling. Results: Here we describe the chromodomain helicase DNA-binding protein (CHD4) as a target of ATM kinase. We show that ionising radiation (IR)-induced phosphorylation of CHD4 affects its intranuclear organization resulting in increased chromatin binding/retention. We also show assembly of phosphorylated CHD4 foci at sites of DNA damage, which might be required to fulfil its function in the regulation of DNA repair. Consistent with this, cells overexpressing a phospho-mutant version of CHD4 that cannot be phosphorylated by ATM fail to show enhanced chromatin retention after DSBs and display high rates of spontaneous damage. Conclusion: These results provide insight into how CHD4 phosphorylation might be required to remodel chromatin around DNA breaks allowing efficient DNA repair to occur.
Resumo:
Human SSB1 (single-stranded binding protein 1 [hSSB1]) was recently identified as a part of the ataxia telangiectasia mutated (ATM) signaling pathway. To investigate hSSB1 function, we performed tandem affinity purifications of hSSB1 mutants mimicking the unphosphorylated and ATM-phosphorylated states. Both hSSB1 mutants copurified a subset of Integrator complex subunits and the uncharacterized protein LOC58493/c9orf80 (henceforth minute INTS3/hSSB-associated element [MISE]). The INTS3–MISE–hSSB1 complex plays a key role in ATM activation and RAD51 recruitment to DNA damage foci during the response to genotoxic stresses. These effects on the DNA damage response are caused by the control of hSSB1 transcription via INTS3, demonstrating a new network controlling hSSB1 function.
Resumo:
Mock circulation loops (MCLs) are used to evaluate cardiovascular devices prior to in-vivo trials; however they lack the vital autoregulatory responses that occur in humans. This study aimed to develop and implement a left and right ventricular Frank-Starling response in a MCL. A proportional controller based on ventricular end diastolic volume was used to control the driving pressure of the MCL’s pneumatically operated ventricles. Ventricular pressure-volume loops and end systolic pressure-volume relationships were produced for a variety of healthy and pathological conditions and compared with human data to validate the simulated Frank-Starling response. The non-linear Frank-Starling response produced in this study successfully altered left and right ventricular contractility with changing preload and was validated with previously reported data. This improvement to an already detailed MCL has resulted in a test rig capable of further refining cardiovascular devices and reducing the number of in-vivo trials.
Resumo:
A novel nitroxide-mediated polymerization (NMP) control agent; 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO), was used in the free-radical polymerization of styrene. The conversion of styrene during NMP was studied using FT-Raman spectroscopy and the effectiveness of TMAO as a NMP control agent was assessed by GPC analysis. Fidelity of the TMAO-alkoxyamine end-group on the synthesized polymers was confirmed by GPC, UV-Vis and fluorescence spectroscopic analyses. Comparison to the well known NMP control agent, TEMPO was made. TMAO showed control of molecular weight approaching that of TEMPO. Attempts to improve the properties of TMAO as an NMP control agent by synthesizing an analogue with bulkier substituents around the nitroxide did not generate the target molecule but demonstrated some of the interesting chemistry of the azaphenalene ring system
Resumo:
The fluid flow and heat transfer inside a triangular enclosure due to instantaneous heating on the inclined walls are investigated using an improved scaling analysis and direct numerical simulations. The development of the unsteady natural convection boundary layer under the inclined walls may be classified into three distinct stages including a start-up stage, a transitional stage and a steady state stage, which can be clearly identified in the analytical and numerical results. A new triple-layer integral approach of scaling analysis has been considered to obtain major scaling relations of the velocity, thicknesses, Nusselt number and the flow development time of the natural convection boundary layer and verified by direct numerical simulations over a wide range of flow parameters.
Resumo:
Laminar magnetohydrodynamic (MHD) natural convection flow from an isothermal sphere immersed in a fluid with viscosity proportional to linear function of temperature has been studied. The governing boundary layer equations are transformed into a non-dimensional form and the resulting nonlinear system of partial differential equations are reduced to convenient form which are solved numerically by two very efficient methods, namely, (i) Implicit finite difference method together with Keller box scheme and (ii) Direct numerical scheme. Numerical results are presented by velocity and temperature distribution, streamlines and isotherms of the fluid as well as heat transfer characteristics, namely the local skin-friction coefficients and the local heat transfer rate for a wide range of magnetohydrodynamic paramagnet and viscosity-variation parameter.