837 resultados para Long-Polling, GCM, Google Cloud Messaging, RESTful Web services, Push, Notifiche
Resumo:
The robotics is one of the most active areas. We also need to join a large number of disciplines to create robots. With these premises, one problem is the management of information from multiple heterogeneous sources. Each component, hardware or software, produces data with different nature: temporal frequencies, processing needs, size, type, etc. Nowadays, technologies and software engineering paradigms such as service-oriented architectures are applied to solve this problem in other areas. This paper proposes the use of these technologies to implement a robotic control system based on services. This type of system will allow integration and collaborative work of different elements that make up a robotic system.
Resumo:
With the quick advance of web service technologies, end-users can conduct various on-line tasks, such as shopping on-line. Usually, end-users compose a set of services to accomplish a task, and need to enter values to services to invoke the composite services. Quite often, users re-visit websites and use services to perform re-occurring tasks. The users are required to enter the same information into various web services to accomplish such re-occurring tasks. However, repetitively typing the same information into services is a tedious job for end-users. It can negatively impact user experience when an end-user needs to type the re-occurring information repetitively into web services. Recent studies have proposed several approaches to help users fill in values to services automatically. However, prior studies mainly suffer the following drawbacks: (1) limited support of collecting and analyzing user inputs; (2) poor accuracy of filling values to services; (3) not designed for service composition. To overcome the aforementioned drawbacks, we need maximize the reuse of previous user inputs across services and end-users. In this thesis, we introduce our approaches that prevent end-users from entering the same information into repetitive on-line tasks. More specifically, we improve the process of filling out services in the following 4 aspects: First, we investigate the characteristics of input parameters. We propose an ontology-based approach to automatically categorize parameters and fill values to the categorized input parameters. Second, we propose a comprehensive framework that leverages user contexts and usage patterns into the process of filling values to services. Third, we propose an approach for maximizing the value propagation among services and end-users by linking a set of semantically related parameters together and similar end-users. Last, we propose a ranking-based framework that ranks a list of previous user inputs for an input parameter to save a user from unnecessary data entries. Our framework learns and analyzes interactions of user inputs and input parameters to rank user inputs for input parameters under different contexts.
Resumo:
Effectively using heterogeneous, distributed information has attracted much research in recent years. Current web services technologies have been used successfully in some non data intensive distributed prototype systems. However, most of them can not work well in data intensive environment. This paper provides an infrastructure layer in data intensive environment for the effectively providing spatial information services by using the web services over the Internet. We extensively investigate and analyze the overhead of web services in data intensive environment, and propose some new optimization techniques which can greatly increase the system’s efficiency. Our experiments show that these techniques are suitable to data intensive environment. Finally, we present the requirement of these techniques for the information of web services over the Internet.
Resumo:
The Environmental Sciences Division within Queensland Environmental Protection Agency works to monitor, assess and model the condition of the environment. The Division has as a legislative responsibility to produce a whole-of-government report every four years dealing environmental conditions and trends in a ”State of the Environment report” (SoE)[1][2][3]. State of Environment Web Service Reporting System is a supplementary web service based SoE reporting tool, which aims to deliver accurate, timely and accessible information on the condition of the environment through web services via Internet [4][5]. This prototype provides a scientific assessment of environmental conditions for a set of environmental indicators. It contains text descriptions and tables, charts and maps with spatiotemporal dimensions to show the impact of certain environmental indicators on our environment. This prototype is a template based indicator system, to which the administrator may add new sql queries for new indicator services without changing the architecture and codes of this template. The benefits are brought through a service-oriented architecture which provides an online query service with seamless integration. In addition, since it uses web service architecture, each individual component within the application can be implemented by using different programming languages and in different operating systems. Although the services showed in this demo are built upon two datasets of regional ecosystem and protection area of Queensland, it will be possible to report on the condition of water, air, land, coastal zones, energy resources, biodiversity, human settlements and natural culture heritage on the fly as well. Figure 1 shows the architecture of the prototype. In the next section, I will discuss the research tasks in the prototype.
Resumo:
Recent developments in service-oriented and distributed computing have created exciting opportunities for the integration of models in service chains to create the Model Web. This offers the potential for orchestrating web data and processing services, in complex chains; a flexible approach which exploits the increased access to products and tools, and the scalability offered by the Web. However, the uncertainty inherent in data and models must be quantified and communicated in an interoperable way, in order for its effects to be effectively assessed as errors propagate through complex automated model chains. We describe a proposed set of tools for handling, characterizing and communicating uncertainty in this context, and show how they can be used to 'uncertainty- enable' Web Services in a model chain. An example implementation is presented, which combines environmental and publicly-contributed data to produce estimates of sea-level air pressure, with estimates of uncertainty which incorporate the effects of model approximation as well as the uncertainty inherent in the observational and derived data.
Resumo:
Composite Web Services (CWS) aggregate multiple Web Services in one logical unit to accomplish a complex task (e.g. business process). This aggregation is achieved by defining a workflow that orchestrates the underlying Web Services in a manner consistent with the desired functionality. Since CWS can aggregate atomic and other CWS they foster the development of service layers and reuse of already existing functionality. An important issue in the deployment of services is their run-time performance under various loads. Due to the complex interactions of the underlying services, a CWS they can exhibit problematic and often difficult to predict behaviours in overload situations. This paper focuses on the use of request scheduling for improving CWS performance in overload situations. Different scheduling policies are investigated in regards to their effectiveness in helping with bulk arrivals.
Resumo:
The using of the upsurge of semantics web technologies gives a possibility for an increasing of the flexibility, extensibility and consistency of the existent industrial standards for modeling of web services. In the paper the types of semantic description of web services and the degree of their realization in BPEL4WS (Business Process Execution Language for Web Services) respectively on the abstract and executable level are treated. The methods for using of BPEL4WS for the purposes of semantic web services in the direction of their semi-automatic integration are suggested.
Resumo:
INFRAWEBS project [INFRAWEBS] considers usage of semantics for the complete lifecycle of Semantic Web processes, which represent complex interactions between Semantic Web Services. One of the main initiatives in the Semantic Web is WSMO framework, aiming at describing the various aspects related to Semantic Web Services in order to enable the automation of Web Service discovery, composition, interoperation and invocation. In the paper the conceptual architecture for BPEL-based INFRAWEBS editor is proposed that is intended to construct a part of WSMO descriptions of the Semantic Web Services. The semantic description of Web Services has to cover Data, Functional, Execution and QoS semantics. The representation of Functional semantics can be achieved by adding the service functionality to the process description. The architecture relies on a functional (operational) semantics of the Business Process Execution Language for Web Services (BPEL4WS) and uses abstract state machine (ASM) paradigm. This allows describing the dynamic properties of the process descriptions in terms of partially ordered transition rules and transforming them to WSMO framework.
Resumo:
Distributed and/or composite web applications are driven by intercommunication via web services, which employ application-level protocols, such as SOAP. However, these protocols usually rely on the classic HTTP for transportation. HTTP is quite efficient for what it does — delivering web page content, but has never been intended to carry complex web service oriented communication. Today there exist modern protocols that are much better fit for the job. Such a candidate is XMPP. It is an XML-based, asynchronous, open protocol that has built-in security and authentication mechanisms and utilizes a network of federated servers. Sophisticated asynchronous multi-party communication patterns can be established, effectively aiding web service developers. This paper’s purpose is to prove by facts, comparisons, and practical examples that XMPP is not only better suited than HTTP to serve as middleware for web service protocols, but can also contribute to the overall development state of web services.
Resumo:
The field of Semantic Web Services (SWS) has been recognized as one of the most promising areas of emergent research within the Semantic Web initiative, exhibiting an extensive commercial potential and attracting significant attention from both industry and the research community. Currently, there exist several different frameworks and languages for formally describing a Web Service: Web Ontology Language for Services (OWL-S), Web Service Modelling Ontology (WSMO) and Semantic Annotations for the Web Services Description Language (SAWSDL) are the most important approaches. To the inexperienced user, choosing the appropriate platform for a specific SWS application may prove to be challenging, given a lack of clear separation between the ideas promoted by the associated research communities. In this paper, we systematically compare OWL-S, WSMO and SAWSDL from various standpoints, namely, that of the service requester and provider as well as the broker-based view. The comparison is meant to help users to better understand the strengths and limitations of these different approaches to formalizing SWS, and to choose the most suitable solution for a given application. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
The field of Semantic Web Services (SWS) has been recognized as one of the most promising areas of emergent research within the Semantic Web (SW) initiative, exhibiting an extensive commercial potential, and attracting significant attention from both industry and the research community. Currently, there exist several different frameworks and languages for formally describing a Web Service: OWL-S (Web Ontology Language for Services), WSMO (Web Service Modeling Ontology) and SAWSDL (Semantic Annotations for the Web Services Description Language) are the most important approaches. To the inexperienced user, choosing the appropriate paradigm for a specific SWS application may prove to be challenging, given a lack of clear separation between the ideas promoted by the associated research communities. In this paper, we systematically compare OWL-S, WSMO and SAWSDL from various standpoints, namely that of the service requester and provider as well as the broker based view. The comparison is meant to help users to better understand the strengths and limitations of these different approaches to formalising SWS, and to choose the most suitable solution for a given use case. © 2013 IEEE.
Resumo:
With the quick advance of web service technologies, end-users can conduct various on-line tasks, such as shopping on-line. Usually, end-users compose a set of services to accomplish a task, and need to enter values to services to invoke the composite services. Quite often, users re-visit websites and use services to perform re-occurring tasks. The users are required to enter the same information into various web services to accomplish such re-occurring tasks. However, repetitively typing the same information into services is a tedious job for end-users. It can negatively impact user experience when an end-user needs to type the re-occurring information repetitively into web services. Recent studies have proposed several approaches to help users fill in values to services automatically. However, prior studies mainly suffer the following drawbacks: (1) limited support of collecting and analyzing user inputs; (2) poor accuracy of filling values to services; (3) not designed for service composition. To overcome the aforementioned drawbacks, we need maximize the reuse of previous user inputs across services and end-users. In this thesis, we introduce our approaches that prevent end-users from entering the same information into repetitive on-line tasks. More specifically, we improve the process of filling out services in the following 4 aspects: First, we investigate the characteristics of input parameters. We propose an ontology-based approach to automatically categorize parameters and fill values to the categorized input parameters. Second, we propose a comprehensive framework that leverages user contexts and usage patterns into the process of filling values to services. Third, we propose an approach for maximizing the value propagation among services and end-users by linking a set of semantically related parameters together and similar end-users. Last, we propose a ranking-based framework that ranks a list of previous user inputs for an input parameter to save a user from unnecessary data entries. Our framework learns and analyzes interactions of user inputs and input parameters to rank user inputs for input parameters under different contexts.
Resumo:
Heterogeneity has to be taken into account when integrating a set of existing information sources into a distributed information system that are nowadays often based on Service- Oriented Architectures (SOA). This is also particularly applicable to distributed services such as event monitoring, which are useful in the context of Event Driven Architectures (EDA) and Complex Event Processing (CEP). Web services deal with this heterogeneity at a technical level, also providing little support for event processing. Our central thesis is that such a fully generic solution cannot provide complete support for event monitoring; instead, source specific semantics such as certain event types or support for certain event monitoring techniques have to be taken into account. Our core result is the design of a configurable event monitoring (Web) service that allows us to trade genericity for the exploitation of source specific characteristics. It thus delivers results for the areas of SOA, Web services, CEP and EDA.