963 resultados para Locus
Resumo:
BACKGROUND: Microsporidia are obligate intracellular, eukaryotic pathogens that infect a wide range of animals from nematodes to humans, and in some cases, protists. The preponderance of evidence as to the origin of the microsporidia reveals a close relationship with the fungi, either within the kingdom or as a sister group to it. Recent phylogenetic studies and gene order analysis suggest that microsporidia share a particularly close evolutionary relationship with the zygomycetes. METHODOLOGY/PRINCIPAL FINDINGS: Here we expanded this analysis and also examined a putative sex-locus for variability between microsporidian populations. Whole genome inspection reveals a unique syntenic gene pair (RPS9-RPL21) present in the vast majority of fungi and the microsporidians but not in other eukaryotic lineages. Two other unique gene fusions (glutamyl-prolyl tRNA synthetase and ubiquitin-ribosomal subunit S30) that are present in metazoans, choanoflagellates, and filasterean opisthokonts are unfused in the fungi and microsporidians. One locus previously found to be conserved in many microsporidian genomes is similar to the sex locus of zygomycetes in gene order and architecture. Both sex-related and sex loci harbor TPT, HMG, and RNA helicase genes forming a syntenic gene cluster. We sequenced and analyzed the sex-related locus in 11 different Encephalitozoon cuniculi isolates and the sibling species E. intestinalis (3 isolates) and E. hellem (1 isolate). There was no evidence for an idiomorphic sex-related locus in this Encephalitozoon species sample. According to sequence-based phylogenetic analyses, the TPT and RNA helicase genes flanking the HMG genes are paralogous rather than orthologous between zygomycetes and microsporidians. CONCLUSION/SIGNIFICANCE: The unique genomic hallmarks between microsporidia and fungi are independent of sequence based phylogenetic comparisons and further contribute to define the borders of the fungal kingdom and support the classification of microsporidia as unusual derived fungi. And the sex/sex-related loci appear to have been subject to frequent gene conversion and translocations in microsporidia and zygomycetes.
Resumo:
The Rhizopus oryzae species complex is a group of zygomycete fungi that are common, cosmopolitan saprotrophs. Some strains are used beneficially for production of Asian fermented foods but they can also act as opportunistic human pathogens. Although R. oryzae reportedly has a heterothallic (+/-) mating system, most strains have not been observed to undergo sexual reproduction and the genetic structure of its mating locus has not been characterized. Here we report on the mating behavior and genetic structure of the mating locus for 54 isolates of the R. oryzae complex. All 54 strains have a mating locus similar in overall organization to Phycomyces blakesleeanus and Mucor circinelloides (Mucoromycotina, Zygomycota). In all of these fungi, the minus (-) allele features the SexM high mobility group (HMG) gene flanked by an RNA helicase gene and a TP transporter gene (TPT). Within the R. oryzae complex, the plus (+) mating allele includes an inserted region that codes for a BTB/POZ domain gene and the SexP HMG gene. Phylogenetic analyses of multiple genes, including the mating loci (HMG, TPT, RNA helicase), ITS1-5.8S-ITS2 rDNA, RPB2, and LDH genes, identified two distinct groups of strains. These correspond to previously described sibling species R. oryzae sensu stricto and R. delemar. Within each species, discordant gene phylogenies among multiple loci suggest an outcrossing population structure. The hypothesis of random-mating is also supported by a 50:50 ratio of plus and minus mating types in both cryptic species. When crossed with tester strains of the opposite mating type, most isolates of R. delemar failed to produce zygospores, while isolates of R. oryzae produced sterile zygospores. In spite of the reluctance of most strains to mate in vitro, the conserved sex locus structure and evidence for outcrossing suggest that a normal sexual cycle occurs in both species.
Resumo:
Analyses the Family Division decision in Q v Q on the competing claims of a father and son to beneficial ownership of a house in which the father sought to on a secret agreement entered into with his sons when transferring the property into their joint names, intended to subvert the inheritance tax rules on lifetime gifts by retaining the right to have the property transferred back to him, and the son relied on a later agreement with his brother to transfer the house into his sole name, in reliance on which he and his wife had acted to their detriment by paying for its upkeep and renovation.
Resumo:
The chromosomal genotype, as judged by multi locus sequence typing, and the episomal genotype, as judged by plasmid profile and cry gene content, were analyzed for a collection of strains of Bacillus thuringiensis. These had been recovered in vegetative form over a period of several months from the leaves of a small plot of clover (Trifolium hybridum). A clonal population structure was indicated, although greater variation in sequence types (STs) was discovered than in previous collections of B. cereus/B. thuringiensis. Isolates taken at the same time had quite different genotypes, whereas those of identical genotypes were recovered at different times. The profiles of plasmid content and cry genes generally bore no relation to each other nor to the STs. Evidently, although relatively little recombination was occurring in the seven chromosomal genes analyzed, a great deal of conjugal transfer, and perhaps recombination, was occurring involving plasmids. A clinical diarrheal isolate of B. cereus and the commercial biopesticide strain HD-1 of B. thuringiensis, both included as out-groups, were found to have very similar STs. This further emphasizes the role of episomal elements in the characteristics and differentiation of these two species.
Resumo:
Normally, populations of brown trout are genetically highly variable. Two adjacent populations from NW Scotland, which had previously been found to be monomorphic for 46 protein-coding loci, were studied by higher resolution techniques. Analyses of mitochondrial DNA, multilocus DNA fingerprints and eight specific minisatellite loci revealed no genetic variation among individuals or genetic differences between the two populations. Continual low effective population sizes or severe repeated bottlenecks, as a result of low or variable recruitment, probably explain the atypical absence of genetic variation in these trout populations. Growth data do not provide any evidence of a reduction in fitness in trout from these populations.
Resumo:
There is substantial evidence for a susceptibility gene for late-onset Alzheimer's disease (AD) on chromosome 10. One of the characteristic features of AD is the degeneration and dysfunction of the cholinergic system. The genes encoding choline acetyltransferase (ChAT) and its vesicular transporter (VAChT), CHAT and SLC18A3 respectively, map to the linked region of chromosome 10 and are therefore both positional and obvious functional candidate genes for late-onset AD. We have screened both genes for sequence variants and investigated each for association with late-onset AD in up to 500 late-onset AD cases and 500 control DNAs collected in the UK. We detected a total of 17 sequence variants. Of these, 14 were in CHAT, comprising three non-synonymous variants (D7N in the S exon, A120T in exon 5 and L243F in exon 8), one synonymous change (H547H), nine single-nucleotide polymorphisms in intronic, untranslated or promoter regions, and a variable number of tandem repeats in intron 7. Three non-coding SNPs were detected in SLC18A3. None demonstrated any reproducible association with late-onset AD in our samples. Levels of linkage disequilibrium were generally low across the CHAT locus but two of the coding variants, D7N and A120T, proved to be in complete linkage disequilibrium.
A panel of single locus minisatellite DNA probes for application to problems in salmonid aquaculture
Resumo:
Eleven minisatellite DNA locus specific probes, isolated from Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) partial genomic DNA libraries, were tested for cross-hybridization to eleven other salmonid species, i.e. sockeye salmon (Oncorhynchus nerka); coho salmon (O. kisutch), chum salmon (O. keta); pink salmon (O. gorbuscha); chinook salmon (O. tshawytscha); rainbow trout (O. mykiss); brook trout (Salvelinus fontinalis); Arctic charr (S. alpinus); grayling (Thymallus thymallus); huchen (Hucho hucho); pollan (Coregonus autumnalis). Simple single locus profiles for each of these species were revealed by, from two to ten SLPs. These markers are likely to be of great value in addressing several problems in aquaculture of these species.