981 resultados para Load characteristics
Resumo:
Present study is focused on the spatiotemporal variation of the microbial population (bacteria, fungus and actinomycetes) in the grassland soils of tropical montane forest and its relation with important soil physico-chemical characteristics and nutrients. Different physico-chemical properties of the soil such as temperature, moisture content, organic carbon, available nitrogen, available phosphorous and available potassium have been studied. Results of the present study revealed that both microbial load and soil characteristics showed spatiotemporal variation. Microbial population of the grassland soils were characterized by high load of bacteria followed by fungus and actinomycetes. Microbial load was high during pre monsoon season, followed by post monsoon and monsoon. The microbial load varied with important soil physico-chemical properties and nutrients. Organic carbon content, available nitrogen and available phosphorous were positively correlated with bacterial load and the correlation is significant at 0.05 and 0.01 levels respectively. Available nitrogen and available phosphorous were positively correlated with fungus at 0.05 level significance. Moisture content was negatively correlated with actinomycetes at 0.01 level of significance. Organic carbon negatively correlated with actinomycetes load at 0.05 level of significance
Resumo:
Friction welding is a solid state joining process that produces coalescence in materials, using the heat developed between surfaces through a combination of mechanical induced rubbing motion and applied load. In rotary friction welding technique heat is generated by the conversion of mechanical energy into thermal energy at the interface of the work pieces during rotation under pressure. Traditionally friction welding is carried out on a dedicated machine because of its adaptability to mass production. In the present work, steps were made to modify a conventional lathe to rotary friction welding set up to obtain friction welding with different interface surface geometries at two different speeds and to carry out tensile characteristic studies. The surface geometries welded include flat-flat, flat-tapered, tapered-tapered, concave-convex and convex-convex. A comparison of maximum load, breaking load and percentage elongation of different welded geometries has been realized through this project. The maximum load and breaking load were found to be highest for weld formed between rotating flat and stationary tapered at 500RPM and the values were 19.219kN and 14.28 kN respectively. The percentage elongation was found to be highest for weld formed between rotating flat and stationary flat at 500RPM and the value was 21.4%. Hence from the studies it is cleared that process parameter like “interfacing surface geometries” of weld specimens have strong influence on tensile characteristics of friction welded joints
Resumo:
Welding of high strength and low weight materials like Aluminium Alloys without any defects by conventional welding techniques is a major challenge in industries. Hence research on solid state welding techniques like Friction stir welding and Friction welding techniques have got much importance in joining of Aluminium alloys. However most of the industries are not changing conventional techniques as skilled workers are available on that area. Most common conventional welding techniques used for joining of Aluminium alloys are Gas welding and Arc welding. Friction welding is a solid-state welding process that generates heat through mechanical friction between a moving and a stationary component with the addition of a lateral force called “upset” to plast ically displace and fuse the materials. In this work, experimental study on tensile and micro structural characteristics of welded joints formed from conventional welding techniques and Rotary friction welding(suitable for weld specimens with circular cross section) has been carried out and the same were compared. The process parameters for arc welding used was 50-70 Amp reverse polarity DC and electrodes of 2.3mm diameter. In Gas welding, the parameters were oxy acetylene neural flame at 3200°C and 3mm electrodes . In the case of friction welding an axial pressure loading of 3Mpa with 5 MPa as upsetting pressure and 500 rpm were used to obtain good welded joints. Tensile characteristic studies of Arc welded joints and Gas welded joints showed 48% and 60 % variations respectively from the maximum load bearing characteristics of parent metal. In the case of friction welded joint, the variation was found to 46%. Micro structural evaluation of conventionally welded joints exhibited clear distinct zones of various weld regions. In the case of friction welded joint micro structural photographs showed comparable features both in parent metal and welded region. Thus the tensile characteristic study and microstructure evaluations proved that friction welded joints are good in both aspects compared to conventionally welded joints.
Resumo:
The effect of variations in land cover on mean radiant surface temperature (Tmrt) is explored through a simple scheme developed within the radiation model SOLWEIG. Outgoing longwave radiation is parameterised using surface temperature observations on a grass and an asphalt surface, whereas outgoing shortwave radiation is modelled through variations in albedo for the different surfaces. The influence of surface materials on Tmrt is small compared to the effects of shadowing. Nevertheless, altering ground surface materials could contribute to a reduction on Tmrt to reduce the radiant load during heat-wave episodes in locations where shadowing is not an option. Evaluation of the new scheme suggests that despite its simplicity it can simulate the outgoing fluxes well, especially during sunny conditions. However, it underestimates at night and in shadowed locations. One grass surface used to develop the parameterisation, with very different characteristics compared to an evaluation grass site, caused Tmrt to be underestimated. The implications of using high resolution (e.g. 15 minutes) temporal forcing data under partly cloudy conditions are demonstrated even for fairly proximal sites.
Resumo:
In Sweden solar irradiation and space heating loads are unevenly distributed over the year. Domestic hot water loads may be nearly constant. Test results on solar collector performance are often reported as yearly output of a certain collector at fixed temperatures, e g 25, 50 and 75 C. These data are not suitable for dimensioning of solar systems, because the actual performance of the collector depends heavily on solar fraction and load distribution over the year.At higher latitudes it is difficult to attain high solar fractions for buildings, due to overheating in summer and small marginal output for added collector area. Solar collectors with internal reflectors offer possibilities to evade overheating problems and deliver more energy at seasons when the load is higher. There are methods for estimating the yearly angular irradiation distribution, but there is a lack of methods for describing the load and the storage in such a way as to enable optical design of season and load adapted collectors.This report describes two methods for estimation of solar system performance with relevance for season and load adaption. Results regarding attainable solar fractions as a function of collector features, load profiles, load levels and storage characteristics are reported. The first method uses monthly collector output data at fixed temperatures from the simulation program MINSUN for estimating solar fractions for different load profiles and load levels. The load level is defined as estimated yearly collector output at constant collector temperature divided be yearly load. This table may examplify the results:CollectorLoadLoadSolar Improvementtypeprofile levelfractionover flat plateFlat plateDHW 75 %59 %Load adaptedDHW 75 %66 %12 %Flat plateSpace heating 50 %22 %Load adaptedSpace heating 50 %28 %29 %The second method utilises simulations with one-hour timesteps for collectors connected to a simplified storage and a variable load. Collector output, optical and thermal losses, heat overproduction, load level and storage temperature are presented as functions of solar incidence angles. These data are suitable for optical design of load adapted solar collectors. Results for a Stockholm location indicate that a solar combisystem with a solar fraction around 30 % should have collectors that reduce heat production at solar heights above 30 degrees and have optimum efficiency for solar heights between 8 and 30 degrees.
Resumo:
China Lake is located in Kennebec County, Maine. Since 1983 the lake has suffered from yearly algal blooms as a result of the addition of excess nutrients. The nutrient load was amplified by erosion within the watershed. Erosion varies widely depending on a number of factors, including the slope of the land, the type of soil, and the way the land is being used. Certain land use types have a high potential to add nutrients to the environment, while others may help absorb excess nutrients and prevent erosion and runoff into the lake. A comprehensive examination of the China Lake watershed was completed using GIS to calculate the erosion potential for the entire area, taking into account past and present land use patterns. This information will help the towns around the lake to make informed decisions about future development and land management.
Resumo:
This work presents a neural network based on the ART architecture ( adaptive resonance theory), named fuzzy ART& ARTMAP neural network, applied to the electric load-forecasting problem. The neural networks based on the ARTarchitecture have two fundamental characteristics that are extremely important for the network performance ( stability and plasticity), which allow the implementation of continuous training. The fuzzy ART& ARTMAP neural network aims to reduce the imprecision of the forecasting results by a mechanism that separate the analog and binary data, processing them separately. Therefore, this represents a reduction on the processing time and improved quality of the results, when compared to the Back-Propagation neural network, and better to the classical forecasting techniques (ARIMA of Box and Jenkins methods). Finished the training, the fuzzy ART& ARTMAP neural network is capable to forecast electrical loads 24 h in advance. To validate the methodology, data from a Brazilian electric company is used. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Realizou-se um estudo histopatológico da mucosa do abomaso de 40 cordeiros da raça Corriedale, expostos à infecção natural por Haemonchus spp. Os cordeiros foram colocados em pastagens contaminadas por 14 dias e após 28 dias de estabulação foram necropsiados. Por ocasião da necropsia, foram colhidas amostras de fezes para a realização da contagem de ovos por grama de fezes (OPG) e amostras do abomaso para exame histopatológico e contagem do número de eosinófilos, mastócitos e leucócitos globulares. O número de Haemonchus spp. presente no abomaso foi estimado a partir de uma alíquota de 10% do conteúdo. O número de ovos por fêmea foi estimado em 10 fêmeas de Haemonchus spp. colhidas de cada animal. Coeficientes de correlação significativos entre as características analisadas foram: número de Haemonchus e contagem de OPG (r = 0,86); comprimento de fêmeas e número de ovos por fêmea (r = 0,60); comprimento de fêmeas e contagem de OPG (r = 0,53); número de eosinófilos e número de Haemonchus (r = 0,48); número de eosinófilos e número de leucócitos globulares (r = 0,54); número de mastócitos e comprimento de fêmeas (r = -0,39) e número de mastócitos e número de leucócitos globulares (r = 0,34). Das características analisadas a que apresentou maior correlação com a carga parasitária dos animais foi a contagem de OPG.
Resumo:
This paper deals with the effects of hair coat characteristics on the sweating rate of Brazilian Braford cows and estimation of heritabilities and genetic correlations of these traits. Data (n=1607) on hair length, coat thickness, hair diameter, number of hairs per unit area, coat reflectance and sweating rate were recorded from heifers and cows of a commercial herd managed on range under extensive system. The data were analyzed considering the following effects on the model for hair coat traits: classes of sires and contemporary groups; linear effects of month and genotype; linear and quadratic effects of age. The effect of sire was important (P<0.05) for all hair coat traits, except for number of hairs; contemporary groups affected (P<0.05) all hair coat traits; the effect of sampling month was important (P<0.05) for hair length and reflectance; genotype affected (P<0.05) hair length, diameter and coat reflectance; the quadratic effect of age was important (P<0.05) only for coat reflectance. Two models were used to analyze the sweating rate. The first model considered the following fixed effects: classes of contemporary groups and sires; linear effect of genotype, coat thickness, hair length, hair diameter, number of hairs, coat reflectance; linear and quadratic effects of time of day, age, air temperature, partial vapour pressure and radiant heat load. The second model used for the sweating rate considered the same fixed effects for the first model, except that the hair coat characteristics were adjusted for important effects used in the models to analyze hair coat traits. All meteorological factors and contemporary groups were important (P<0.05) on variation of sweating rate in both models. The Restricted Maximum. Likelihood (REML) method was used to estimate variance and covariance components under the sire model. Results included heritability estimates in narrow (h(2)) and broad (H) sense for single-trait analyzes: hair thickness (h(2)=0.16; H-2=0.26); hair length (h(2)=0.18; H-2=0.39); number of hairs (h(2)=0.08 +/- 0.07; H-2=0.08 +/- 0.07); hair diameter (h(2)=0.12 +/- 0.07; H-2=0.12 +/- 0.07); coat reflectance (h(2)=0.30; H-2=0.42); and sweating rate (h(2)=0.10 +/- 0.07; H-2=0.10 +/- 0.07). In general, the genetic correlations between the adaptive traits were favorable as for the direction to select for adaptation in tropical environment; however, they presented high standard errors. The results of this study imply that hair coat characteristics and sweating ability are important for the adaptability to heat stress and they must be better studied and further considered for selection for genetic progress of adaptation in tropical environment. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
The stabilization of swine wastewaters from swine confined housing by the combination of a upflow anaerobic sludge blanket (UASB) reactor and waste stabilization ponds is a viable alternative to minimize the environmental impact caused by inadequate disposal of swine wastewaters. In the present study, the polluting load of pre-decanted swine wastewater treated with a series of two 0.705 m(3) UASB reactors and then in parallel in aerated and non-aerated stabilization tanks was investigated from January to July, 2000. Physicochemical and microbiological analyses were made adopting standard methods (Standard Methods for Examination of Water and Wastewater, 19th ed., American Public Health Association, Washington, DC, 1995). COD values decreased as the wastewater ran through the integrated biodigestion system dropping from about 3492 +/- 511-4094 mg l(-1) +/- 481 to 124 +/- 52-490 mg l(-1) +/- 230, while nitrate and nitrite levels increased in stabilization tanks, ranging respectively from 4 +/- 0 to 20 mg l(-1) +/- 3 and 3 +/- 1 to 11 mg l(-1) +/- 24. Although the removal of Escherichia coli was more than 97% +/- 6, the effluents of the treatment system still contained unacceptable levels of E. coli (1.6 x 10(3)-1.2 x 10(6) 100 ml(-1)) according to WHO guidelines for use of wastewater in agriculture and aquaculture. These results indicate the necessity of changes on operational characteristics of the treatment system such as an increase of the hydraulic retention time in UASB reactors or in stabilization tanks. (C) 2003 Published by Elsevier Ltd.
Resumo:
Brazil produced in 2002/03 season 317.87×106tons of sugar cane stalks and 36.88×106tons of vegetal residues (green leaves, dry leaves and tops) in a planted area of 4.61×106 hectares (ha). These residues have a useful heat of 3,613.14Mcal.t-1. Currently most of this biomass is burned as a pre-harvest practice. The doubt persists in the system type that it must be adopted to pick up, load, transport and unload this biomass at the sugar mill boilers. This study analyzed 22 variables related to operational costs and physical characteristics of these residues in a field situation using a JOHN DEERE® 6850 forage harvester with two different treatments: T1 and T2 (two types of rakes) with 6 repetitions each one. The geographic location of the studied area that belongs to COSTA PINTO MILL (COSAN® Group) is: Latitude 22°40'30S and Longitude 47°36'38W. The adopted methodology was proposed by Ripoli et al. (2002). The obtained results at a 5% level of significance showed that both treatments did not differed significantly between them. Some of the results were, where EBP stands for Oil Equivalent Barrel: Windrowing (T1=US$0.17.EBP-1 and US$9.59.ha-1, T2=US$0.08.EBP-1 and US$4.27.ha-1); Pick up (T1=US$1.31.EBP-1 and US$44.29.ha-1, T2 =US$1.37.EBP-1 and US$48.36.ha-1); Transportation (T1=US$1.27.EBP-1 and US$14,30.ha -1, T2=US$1.33.EBP-1 and US$14,80.ha -1), Unloading at the sugar mill (T1=US$0.30.EBP-1 and US$3.39.ha-1, T2=US$0.32.EBP-1 and US$3.51.ha-1); Total (T1=US$3.05.EBP-1 and US$71.57.ha-1, T2=US$3.10.EBP-1 and US$70.94.ha-1). Confronting the obtained data with the ones in the bibliography, this system revealed itself more expensive than the baling system or the integral harvest system using combines.
Resumo:
Double-torsion tests were carried out on a commercial ceramic floor tile to verify whether this test is suitable for determining the R-curve of ceramics. The instantaneous crack length was obtained by means of compliance calibration, and it was found that the experimental compliance underestimates the real crack length. The load vs. displacement curves were also found to drop after maximum loading, causing the stress intensity factor to decline. The R-curves were calculated by two methods: linear elastic fracture mechanics and the energetic method. It was obtained that the average values of crack resistance, R, and the double of the work of fracture, 2 · γwof, did not depend on notch length, a0, which is a highly relevant finding, indicating that these parameters were less dependent on the test specimen's geometry. The proposal was to use small notches, which produce long stable crack propagation paths that in turn are particularly important in the case of coarse microstructures.
Resumo:
BACKGROUND AND GOAL: Patients infected with hepatitis C virus (HCV) with elevated low-density lipoprotein (LDL) levels achieve higher sustained virologic response (SVR) rates after peginterferon (PegIFN)/ribavirin treatment versus patients with lower LDL. Our aim was to determine whether SVR rates in patients with low/elevated LDL can be improved by dose intensification. STUDY: In PROGRESS, genotype 1 patients with baseline HCV RNA≥400,000 IU/mL and body weight ≥85 kg were randomized to 48 weeks of 180 μg/wk PegIFN α-2a (40 kDa) plus ribavirin (A: 1200 mg/d; B: 1400/1600 mg/d) or 12 weeks of 360 μg/wk PegIFN α-2a followed by 36 weeks of 180 μg/wk, plus ribavirin (C: 1200 mg/d; D: 1400/1600 mg/d). This retrospective analysis assessed SVR rates among patients with low (<100 mg/dL) or elevated (≥100 mg/dL) LDL. Patients with high LDL (n=256) had higher baseline HCV RNA (5.86×10 IU/mL) versus patients with low LDL (n=262; 4.02×10 IU/mL; P=0.0003). RESULTS: Multiple logistic regression analysis identified a significant interaction between PegIFN α-2a dose and LDL levels on SVR (P=0.0193). The only treatment-related SVR predictor in the nested multiple logistic regression was PegIFN α-2a dose among patients with elevated LDL (P=0.0074); therefore, data from the standard (A+B) and induction (C+D) dose arms were pooled. Among patients with low LDL, SVR rates were 40% and 35% in the standard and induction-dose groups, respectively; SVR rates in patients with high LDL were 44% and 60% (P=0.014), respectively. CONCLUSIONS: Intensified dosing of PegIFN α-2a increases SVR rates in patients with elevated LDL even with the difficult-to-cure characteristics of genotype 1, high baseline viral load, and high body weight. Copyright © 2013 by Lippincott Williams & Wilkins.
Resumo:
Polymeric insulation is an increasing tendency in projects and maintenance of electrical networks for power distribution and transmission. Electrical power devices (e. g., insulators and surge arresters) developed by using polymeric insulation presents many advantages compared to the prior power components using ceramic insulation, such as: a better performance under high pollution environment; high hydrophobicity; high resistance to mechanical, electrical and chemical stresses. The practice with silicone insulators in polluted environments has shown that the ideal performance is directly related to insulator design and polymer formulation. One of the most common misunderstandings in the design of silicone compounds for insulators is the amount of inorganic load used in their formulation. This paper attempts to clarify how the variation of the inorganic load amount affects physicochemical characteristics of different silicone compounds. The physicochemical evaluation is performed from several measurements, such as: density, hardness, elongation, tensile strength. In addition, the evaluation of the physicochemical structure is carried out using infrared test and scanning electronic microscopy (SEM). The electrical analysis is performed from the electric tracking wheel and erosion test, in agreement with the recommendation of the International Electrotechnical Commission (IEC). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Introduction: The term Clinimetric was introduced by Feinstein in 1982, who first noticed that despite all the improvements in the assessment methods, a number of clinical phenomena were still unconsidered during the evaluation process. Yet today clinical phenomena, such as stress, relevant in diseases progression and course, are not completely evaluated. Only recently, according to the clinimetric approach, Fava and colleagues have introduced specific criteria for evaluating the allostatic overload in clinical setting. Methods: Participants were 240 blood donors recruited from May 2007 to December 2009 in 4 different blood Centers (AVIS) in Italy. Blood samples from each participant were collected for laboratory test the same day the self-rating instruments were administered (Psychosocial Index, Symptom Questionnaire, Psychological well-being scales, Temperament and Character inventory, Self-Report Altruism scale). The study explore different aspects describing sample characteristics and correlates of stress in the total sample (part I), new selection criteria applied to existing instruments to identify individuals reporting allostatic load (part II), and differences on biological correlates between subjects with vs without AL. Results: Significant differences according to gender and past illnesses have been found in different dimensions of well-being and distress. Further, distress was explained for more than 60% by 4 main factors such as anxiety, somatic symptoms, environmental mastery and persistence. According to the new criteria, 98 donors reported AL. Allostatic load individuals reported to engage in less altruistic behaviours. Also they differ in personality traits and characters from controls. In the last part, results showed significant differences among donors according to allostatic load on diverse biological parameters (RBC, MCV, immune essay). Conclusion: This study presents obvious limitations due to its preliminary nature. Further research are need to confirm that these new criteria may lead to identify high risk individuals reporting not only stressful situations but also vulnerabilities.