914 resultados para Liquid-Solid Flow


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This is an introduction to the theory of interacting Brownian particles, as applied to charge-stabilised colloidal suspensions near their equilibrium liquid-solid transition. The density functional approach to the statics of the transition is reviewed briefly, and the generalised Langevin equation method for the dynamics presented in detail. Work with A.V. Indrani [1] on a self-consistent approach for calculating the excess single-particle friction is presented, which explains the observed [2] ''universal'' suppression of self-diffusion at freezing as a consequence of the universal structure-factor height at this transition. Criticisms, open questions, and challenges to theory are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Silicon nanowires (NWs) have been grown in the vapor phase for the first time with bismuth (Bi) as a catalyst using the electron beam evaporation method at a low substrate temperature of 280 degrees C. The grown Si nanowires were randomly oriented on the substrate with an average length of 900 nm for a deposition time of 15 min. Bi faceted nanoparticles (crowned) at the end of the grown Si nanowires have been observed and attributed to the Vapor-Liquid-Solid (VLS) growth mechanism. Transmission Electron Microscopy analysis on the nanowires revealed their single crystalline nature and interestingly bismuth particles were observed in Si nanowires. The obtained results have shown a new window for Si nanowires growth with bismuth as a catalyst. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple thermal evaporation method is presented for the growth of crystalline SnO2 nanowires at a low substrate temperature of 450 degrees C via an gold-assisted vapor-liquid-solid mechanism. The as-grown nanowires were characterized by scanning electron microscopy, transmission electron microscopy and X-ray diffraction, and were also tested for methanol vapor sensing. Transmission electron microscopy studies revealed the single-crystalline nature of the each nanowire. The fabricated sensor shows good response to methanol vapor at an operating temperature of 450 degrees C. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the first time, Tin oxide (SnO2) multiple branched nanowires (NWs) have been synthesized by thermal evaporation of tin (Sn) in presence of oxygen without use of metal catalysts at low substrate temperature of 500 degrees C. Synthesized product consists of multiple branched nanowires and were single crystalline in nature. Each of the nanowire capped with catalyst particle at their ends. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirms that Sn act as catalyst for SnO2 nanowires growth. A self catalytic vapor-liquid-solid (VLS) growth mechanism was proposed to describe the SnO2 nanowires growth. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the first time, high quality tin oxide (SnO2) nanowires have been synthesized at a low substrate temperature of 450 degrees C via vapor-liquid-solid mechanism using an electron beam evaporation technique. The grown nanowires have shown length of 2-4 mu m and diameter of 20-60 nm. High resolution transmission electron microscope studies on the grown nanowires have shown the single crystalline nature of the SnO2 nanowires. We investigated the effect of growth temperature and oxygen partial pressure on SnO2 nanowires growth. Variation of substrate temperature at a constant oxygen partial pressure of 4 x 10(-4) mbar suggested that a temperature equal to or greater than 450 degrees C was the best condition for phase pure SnO2 nanowires growth. The SnO2 nanowires grown on a SiO2 substrate were subjected to UV photo detection. The responsivity and quantum efficiency of SnO2 NWs photo detector (at 10V applied bias) was 12 A/W and 45, respectively, for 12 mu W/cm(2) UV lamp (330 nm) intensity on the photo detector.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lead telluride micro and nanostructures have been grown on silicon and glass substrates by a simple thermal evaporation of PbTe in high vacuum of 3 x 10(-5) mbar. Growth was carried out for two different distances between the evaporation source and the substrates. Synthesized products consist of nanorods and micro towers for 2.4 cm and 3.4 cm of distance between the evaporation source and the substrates respectively. X-ray diffraction and transmission electron microscopy studies confirmed crystalline nature of the nanorods and micro towers. Nanorods were grown by vapor solid mechanism. Each micro tower consists of nano platelets and is capped with spherical catalyst particle at their end, suggesting that the growth proceeds via vapor-liquid-solid (VLS) mechanism. EDS spectrum recorded on the tip of the micro tower has shown the presence of Pb and Te confirming the self catalytic VLS growth of the micro towers. These results open up novel synthesis methods for PbTe nano and microstructures for various applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vertically aligned zinc oxide (ZnO) hierarchical nanostructures were developed by homo-epitaxial growth method using nickel as catalyst, and their physical properties were investigated and reported. ZnO nanorods grown by vapor-liquid-solid method are single crystalline and grown along the < 001 > direction, whereas the second order nano-branches are grown along the < 110 > direction. The homo-epitaxial relation between nano-branches (ZnOb) and ZnO cores (ZnOc) is found to be (110)ZnOb//(110)ZnOc and (002)ZnOb//(002)ZnOc. The simple and hierarchical nanostructures exhibited ultra-violet emission peak at 380 nm as near band edge emission of ZnO and have very weak defects related peak at 492 nm. (C) 2013 The Electrochemical Society. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the self catalytic growth of Sn-doped indium oxide (ITO) nanowires (NWs) over a large area glass and silicon substrates by electron beam evaporation method at low substrate temperatures of 250-400 degrees C. The ITO NWs growth was carried out without using an additional reactive oxygen gas and a metal catalyst particle. Ultrafine diameter (similar to 10-15 nm) and micron long ITO NWs growth was observed in a temperature window of 300-400 degrees C. Transmission electron microscope studies confirmed single crystalline nature of the NWs and energy dispersive spectroscopy studies on the NWs confirmed that the NWs growth proceeds via self catalytic vapor-liquid-solid (VLS) growth mechanism. ITO nanowire films grown on glass substrates at a substrate temperature of 300-400 degrees C have shown similar to 2-6% reflection and similar to 70-85% transmission in the visible region. Effect of deposition parameters was systematically investigated. The large area growth of ITO nanowire films would find potential applications in the optoelectronic devices. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron-deficient nitro-aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World WarII. In this study, we have synthesised a series of pyrene-based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron-deficient NACs through a fluorescence quenching mechanism. A Stern-Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen-bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent-dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid-state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid-solid interface, in which structures of self-assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

All solid state batteries are essential candidate for miniaturizing the portable electronics devices. Thin film batteries are constructed by layer by layer deposition of electrode materials by physical vapour deposition method. We propose a promising novel method and unique architecture, in which highly porous graphene sheet embedded with SnO2 nanowire could be employed as the anode electrode in lithium ion thin film battery. The vertically standing graphene flakes were synthesized by microwave plasma CVD and SnO2 nanowires based on a vapour-liquid-solid (VLS) mechanism via thermal evaporation at low synthesis temperature (620 degrees C). The graphene sheet/SnO2 nanowire composite electrode demonstrated stable cycling behaviours and delivered a initial high specific discharge capacity of 1335 mAh g(-1) and 900 mAh g(-1) after the 50th cycle. Furthermore, the SnO2 nanowire electrode displayed superior rate capabilities with various current densities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The impact of indium tin oxide (ITO) layers over vertically aligned zinc oxide nanorods (ZnO NRs) has been investigated to consider ITO nanolayers as transparent conducting oxide electrodes (TCOE) for hierarchical heteronanostructure solar cell devices that have ZnO nanostructures as branches. ZnO/ITO core/shell nanostructures were prepared in two- steps using vapor-liquid-solid and evaporation processes, and further the structures were annealed at various temperatures. Transmission electron microscopic studies show that the as-grown ZnO/ITO structures consist of an amorphous ITO shell on single crystalline ZnO cores, whereas the structures annealed above 300 degrees C consist of a single crystalline ITO shell. ITO layer deposited ZnO NRs exhibit a small red-shift in ZnO near-band-edge emission as well as optical band gap. The electrical measurements carried out on single ZnO/ITO core/shell NR under dark and UV light showed excellent thermionic transport properties. From these investigations it is emphasized that ITO nanolayers could be used as TCO electrodes for prototype ZnO based hierarchical solar cell devices.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Si nanowire growth on sapphire substrates by the vapor-liquid-solid (VLS) method using Au catalyst particles has been studied. Sapphire was chosen as the substrate to ensure that the vapor phase is the only source of Si. Three hitherto unreported observations are described. First, an incubation period of 120-480 s, which is shown to be the incubation period as defined in classical nucleation theory, is reported. This incubation period permits the determination of a desolvation energy of Si from Au-Si alloys of 15 kT. Two, transmission electron microscopy studies of incubation, point to Si loss by reverse reaction as an important part of the mechanism of Si nanowire growth by VLS. Three, calculations using these physico-chemical parameters determined from incubation and measured steady state growth rates of Si nanowires show that wire growth happens from a supersaturated catalyst droplet. (C) 2015 AIP Publishing LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High pressure Raman spectroscopic studies on perfluorohexane and perfluoroheptane have performed up to 12 GPa. Perfluorohexane under goes two pressure induced transitions: (1) liquid-solid transition at 1.6 GPa and (2) solid-solid transition at 8.2 GPa. On the contrary, perfluoroheptane under goes three phase transitions, they are as follows: (1) liquid-solid transition at 1.3 GPa, (2) intermediate solid I transition at 3 GPa, (3) solid II transition at 7 GPa. The change in slope (d omega/dP) shows that the solid I transition at 3.0 GPa could be the conversion of mid-gauche defect into trans conformers for perfluoroheptane. The pressure induced Raman spectra and the behavior of individual band with pressure shows that the solid phase comprises more than one conformer beyond crystallization. The intensity ratio for both the compounds shows that the high pressure phase beyond 8.2 and 7.0 GPa tends to have close packing with distorted all-trans conformers. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present results for electron beam welding of a binary Ti/Ni dissimilar metal couple. The difference in physical properties of the base metals and metallurgical features (thermodynamics and kinetics) of the system influence both macroscopic transport and microstructure development in the weld. Microstructures near the fusion interfaces are markedly different from those inside the weld region. At the Ti side, Ti2Ni dendrites are observed to grow toward the fusion interface, while in the Ni side, layered growth of gamma-Ni, Ni3Ti, and Ni3Ti + NiTi eutectic is observed. Different morphologies of the latter eutectic constitute the predominant microstructure inside the weld metal region. These results are compared and contrasted with those from laser welding of the same binary couple, and a scheme of solidification is proposed to explain the observations. This highlights notable departures from welding of similar and other dissimilar metals such as a significant asymmetry in heat transport that governs progress of solidification from each side of the couple, and a lack of unique liquidus isotherm characterizing the liquid-solid front.