995 resultados para Linear transverse waves
Resumo:
We investigate the critical behavior of the spectral weight of a single quasiparticle, one of the key observables in experiment, for the particular case of the transverse Ising model. Series expansions are calculated for the linear chain and the square and simple cubic lattices. For the chain model, a conjectured exact result is discovered. For the square and simple cubic lattices, series analyses are used to estimate the critical exponents. The results agree with the general predictions of Sachdev [Quantum Phase Transitions (Cambridge University Press, Cambridge, England, 1999)].
Resumo:
We compare the Q parameter obtained from the semi-analytical model with scalar and vector models for two realistic transmission systems. First a linear system with a compensated dispersion map and second a soliton transmission system.
Resumo:
We investigate experimentally the fundamental characteristics of space-charge waves excited in a photorefractive crystal of Bi12SiO20. Features such as their transient rise and decay as well as their steady-state frequency response are investigated. Based on this, we find the dependence of the space-charge waves' quality factor on spatial frequency and electric-field biasing. The experimental findings are compared with the linear space-charge wave theory developed previously by Sturman et al. [J. Opt. Sec. Am. B 10, 1919 (1993)].
Resumo:
We investigate experimentally the fundamental characteristics of space-charge waves excited in a photorefractive crystal of Bi12SiO20. Features such as their transient rise and decay as well as their steady-state frequency response are investigated. Based on this, we find the dependence of the space-charge waves' quality factor on spatial frequency and electric-field biasing. The experimental findings are compared with the linear space-charge wave theory developed previously by Sturman et al. [J. Opt. Sec. Am. B 10, 1919 (1993)].
Resumo:
The stability characteristics of an incompressible viscous pressure-driven flow of an electrically conducting fluid between two parallel boundaries in the presence of a transverse magnetic field are compared and contrasted with those of Plane Poiseuille flow (PPF). Assuming that the outer regions adjacent to the fluid layer are perfectly electrically insulating, the appropriate boundary conditions are applied. The eigenvalue problems are then solved numerically to obtain the critical Reynolds number Rec and the critical wave number ac in the limit of small Hartmann number (M) range to produce the curves of marginal stability. The non-linear two-dimensional travelling waves that bifurcate by way of a Hopf bifurcation from the neutral curves are approximated by a truncated Fourier series in the streamwise direction. Two and three dimensional secondary disturbances are applied to both the constant pressure and constant flux equilibrium solutions using Floquet theory as this is believed to be the generic mechanism of instability in shear flows. The change in shape of the undisturbed velocity profile caused by the magnetic field is found to be the dominant factor. Consequently the critical Reynolds number is found to increase rapidly with increasing M so the transverse magnetic field has a powerful stabilising effect on this type of flow.
Resumo:
* The author was supported by NSF Grant No. DMS 9706883.
Resumo:
A strictly hyperbolic quasi-linear 2×2 system in two independent variables with C2 coefficients is considered. The existence of a simple wave solution in the sense that the solution is a 2-dimensional vector-valued function of the so called Riemann invariant is discussed. It is shown, through a purely geometrical approach, that there always exists simple wave solution for the general system when the coefficients are arbitrary C^2 functions depending on both, dependent and independent variables.
Resumo:
One of the simplest ways to create nonlinear oscillations is the Hopf bifurcation. The spatiotemporal dynamics observed in an extended medium with diffusion (e.g., a chemical reaction) undergoing this bifurcation is governed by the complex Ginzburg-Landau equation, one of the best-studied generic models for pattern formation, where besides uniform oscillations, spiral waves, coherent structures and turbulence are found. The presence of time delay terms in this equation changes the pattern formation scenario, and different kind of travelling waves have been reported. In particular, we study the complex Ginzburg-Landau equation that contains local and global time-delay feedback terms. We focus our attention on plane wave solutions in this model. The first novel result is the derivation of the plane wave solution in the presence of time-delay feedback with global and local contributions. The second and more important result of this study consists of a linear stability analysis of plane waves in that model. Evaluation of the eigenvalue equation does not show stabilisation of plane waves for the parameters studied. We discuss these results and compare to results of other models.
Resumo:
Large broadening of short optical pulses due to fiber dispersion leads to a strong overlap in information data streams resulting in statistical deviations of the local power from its average. We present a theoretical analysis of rare events of high-intensity fluctuations-optical freak waves-that occur in fiber communication links using bit-overlapping transmission. Although the nature of the large fluctuations examined here is completely linear, as compared to commonly studied freak waves generated by nonlinear effects, the considered deviations inherit from rogue waves the key features of practical interest-random appearance of localized high-intensity pulses. We use the term "rogue wave" in an unusual context mostly to attract attention to both the possibility of purely linear statistical generation of huge amplitude waves and to the fact that in optics the occurrence of such pulses might be observable even with the standard Gaussian or even rarer-than-Gaussian statistics, without imposing the condition of an increased probability of extreme value events. © 2011 American Physical Society.
Resumo:
We feel that the main claim made in the abstract of the preceding Comment is wrong. Using results obtained in our paper, we prove that rogue waves with amplitudes much larger than the average level can be observed during a short period of time in purely linear propagation regimes in optical fiber systems. © 2011 American Physical Society.
Resumo:
The transition of laterally heated flows in a vertical layer and in the presence of a streamwise pressure gradient is examined numerically for the case of different values Prandtl number. The stability analysis of the basic flow for the pure hydrodynamic case ( Pr = 0 ) was reported in [1]. We find that in the absence of transverse pumping the previously known critical parameters are recovered [2], while as the strength of the Poiseuille flow component is increased the convective motion is delayed considerably. Following the linear stability analysis for the vertical channel flow our attention is focused on a study of the finite am- plitude secondary travelling-wave (TW) solutions that develop from the perturbations of the transverse roll type imposed on the basic flow and temperature profiles. The linear stability of the secondary TWs against three-dimensional perturbations is also examined and it is shown that the bifurcating tertiary flows are phase-locked to the secondary TWs.
Resumo:
In this study, we developed and improved the numerical mode matching (NMM) method which has previously been shown to be a fast and robust semi-analytical solver to investigate the propagation of electromagnetic (EM) waves in an isotropic layered medium. The applicable models, such as cylindrical waveguide, optical fiber, and borehole with earth geological formation, are generally modeled as an axisymmetric structure which is an orthogonal-plano-cylindrically layered (OPCL) medium consisting of materials stratified planarly and layered concentrically in the orthogonal directions.
In this report, several important improvements have been made to extend applications of this efficient solver to the anisotropic OCPL medium. The formulas for anisotropic media with three different diagonal elements in the cylindrical coordinate system are deduced to expand its application to more general materials. The perfectly matched layer (PML) is incorporated along the radial direction as an absorbing boundary condition (ABC) to make the NMM method more accurate and efficient for wave diffusion problems in unbounded media and applicable to scattering problems with lossless media. We manipulate the weak form of Maxwell's equations and impose the correct boundary conditions at the cylindrical axis to solve the singularity problem which is ignored by all previous researchers. The spectral element method (SEM) is introduced to more efficiently compute the eigenmodes of higher accuracy with less unknowns, achieving a faster mode matching procedure between different horizontal layers. We also prove the relationship of the field between opposite mode indices for different types of excitations, which can reduce the computational time by half. The formulas for computing EM fields excited by an electric or magnetic dipole located at any position with an arbitrary orientation are deduced. And the excitation are generalized to line and surface current sources which can extend the application of NMM to the simulations of controlled source electromagnetic techniques. Numerical simulations have demonstrated the efficiency and accuracy of this method.
Finally, the improved numerical mode matching (NMM) method is introduced to efficiently compute the electromagnetic response of the induction tool from orthogonal transverse hydraulic fractures in open or cased boreholes in hydrocarbon exploration. The hydraulic fracture is modeled as a slim circular disk which is symmetric with respect to the borehole axis and filled with electrically conductive or magnetic proppant. The NMM solver is first validated by comparing the normalized secondary field with experimental measurements and a commercial software. Then we analyze quantitatively the induction response sensitivity of the fracture with different parameters, such as length, conductivity and permeability of the filled proppant, to evaluate the effectiveness of the induction logging tool for fracture detection and mapping. Casings with different thicknesses, conductivities and permeabilities are modeled together with the fractures in boreholes to investigate their effects for fracture detection. It reveals that the normalized secondary field will not be weakened at low frequencies, ensuring the induction tool is still applicable for fracture detection, though the attenuation of electromagnetic field through the casing is significant. A hybrid approach combining the NMM method and BCGS-FFT solver based integral equation has been proposed to efficiently simulate the open or cased borehole with tilted fractures which is a non-axisymmetric model.
Resumo:
Collisionless shocks, that is shocks mediated by electromagnetic processes, are customary in space physics and in astrophysics. They are to be found in a great variety of objects and environments: magnetospheric and heliospheric shocks, supernova remnants, pulsar winds and their nebulæ, active galactic nuclei, gamma-ray bursts and clusters of galaxies shock waves. Collisionless shock microphysics enters at different stages of shock formation, shock dynamics and particle energization and/or acceleration. It turns out that the shock phenomenon is a multi-scale non-linear problem in time and space. It is complexified by the impact due to high-energy cosmic rays in astrophysical environments. This review adresses the physics of shock formation, shock dynamics and particle acceleration based on a close examination of available multi-wavelength or in situ observations, analytical and numerical developments. A particular emphasis is made on the different instabilities triggered during the shock formation and in association with particle acceleration processes with regards to the properties of the background upstream medium. It appears that among the most important parameters the background magnetic field through the magnetization and its obliquity is the dominant one. The shock velocity that can reach relativistic speeds has also a strong impact over the development of the micro-instabilities and the fate of particle acceleration. Recent developments of laboratory shock experiments has started to bring some new insights in the physics of space plasma and astrophysical shock waves. A special section is dedicated to new laser plasma experiments probing shock physics.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Quantum mechanics, optics and indeed any wave theory exhibits the phenomenon of interference. In this thesis we present two problems investigating interference due to indistinguishable alternatives and a mostly unrelated investigation into the free space propagation speed of light pulses in particular spatial modes. In chapter 1 we introduce the basic properties of the electromagnetic field needed for the subsequent chapters. In chapter 2 we review the properties of interference using the beam splitter and the Mach-Zehnder interferometer. In particular we review what happens when one of the paths of the interferometer is marked in some way so that the particle having traversed it contains information as to which path it went down (to be followed up in chapter 3) and we review Hong-Ou-Mandel interference at a beam splitter (to be followed up in chapter 5). In chapter 3 we present the first of the interference problems. This consists of a nested Mach-Zehnder interferometer in which each of the free space propagation segments are weakly marked by mirrors vibrating at different frequencies [1]. The original experiment drew the conclusions that the photons followed disconnected paths. We partition the description of the light in the interferometer according to the number of paths it contains which-way information about and reinterpret the results reported in [1] in terms of the interference of paths spatially connected from source to detector. In chapter 4 we briefly review optical angular momentum, entanglement and spontaneous parametric down conversion. These concepts feed into chapter 5 in which we present the second of the interference problems namely Hong-Ou-Mandel interference with particles possessing two degrees of freedom. We analyse the problem in terms of exchange symmetry for both boson and fermion pairs and show that the particle statistics at a beam splitter can be controlled for suitably chosen states. We propose an experimental test of these ideas using orbital angular momentum entangled photons. In chapter 6 we look at the effect that the transverse spatial structure of the mode that a pulse of light is excited in has on its group velocity. We show that the resulting group velocity is slower than the speed of light in vacuum for plane waves and that this reduction in the group velocity is related to the spread in the wave vectors required to create the transverse spatial structure. We present experimental results of the measurement of this slowing down using Hong-Ou-Mandel interference.