927 resultados para Linear discriminant analysis
Resumo:
This work compares and contrasts results of classifying time-domain ECG signals with pathological conditions taken from the MITBIH arrhythmia database. Linear discriminant analysis and a multi-layer perceptron were used as classifiers. The neural network was trained by two different methods, namely back-propagation and a genetic algorithm. Converting the time-domain signal into the wavelet domain reduced the dimensionality of the problem at least 10-fold. This was achieved using wavelets from the db6 family as well as using adaptive wavelets generated using two different strategies. The wavelet transforms used in this study were limited to two decomposition levels. A neural network with evolved weights proved to be the best classifier with a maximum of 99.6% accuracy when optimised wavelet-transform ECG data wits presented to its input and 95.9% accuracy when the signals presented to its input were decomposed using db6 wavelets. The linear discriminant analysis achieved a maximum classification accuracy of 95.7% when presented with optimised and 95.5% with db6 wavelet coefficients. It is shown that the much simpler signal representation of a few wavelet coefficients obtained through an optimised discrete wavelet transform facilitates the classification of non-stationary time-variant signals task considerably. In addition, the results indicate that wavelet optimisation may improve the classification ability of a neural network. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Accurate single trial P300 classification lends itself to fast and accurate control of Brain Computer Interfaces (BCIs). Highly accurate classification of single trial P300 ERPs is achieved by characterizing the EEG via corresponding stationary and time-varying Wackermann parameters. Subsets of maximally discriminating parameters are then selected using the Network Clustering feature selection algorithm and classified with Naive-Bayes and Linear Discriminant Analysis classifiers. Hence the method is assessed on two different data-sets from BCI competitions and is shown to produce accuracies of between approximately 70% and 85%. This is promising for the use of Wackermann parameters as features in the classification of single-trial ERP responses.
Resumo:
Various complex oscillatory processes are involved in the generation of the motor command. The temporal dynamics of these processes were studied for movement detection from single trial electroencephalogram (EEG). Autocorrelation analysis was performed on the EEG signals to find robust markers of movement detection. The evolution of the autocorrelation function was characterised via the relaxation time of the autocorrelation by exponential curve fitting. It was observed that the decay constant of the exponential curve increased during movement, indicating that the autocorrelation function decays slowly during motor execution. Significant differences were observed between movement and no moment tasks. Additionally, a linear discriminant analysis (LDA) classifier was used to identify movement trials with a peak accuracy of 74%.
Resumo:
Objective. Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no ‘cure’ at the present time. Brain–computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. Approach. Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. Main results. It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). Significance. The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals
Resumo:
OBJECTIVE: Assimilating the diagnosis complete spinal cord injury (SCI) takes time and is not easy, as patients know that there is no 'cure' at the present time. Brain-computer interfaces (BCIs) can facilitate daily living. However, inter-subject variability demands measurements with potential user groups and an understanding of how they differ to healthy users BCIs are more commonly tested with. Thus, a three-class motor imagery (MI) screening (left hand, right hand, feet) was performed with a group of 10 able-bodied and 16 complete spinal-cord-injured people (paraplegics, tetraplegics) with the objective of determining what differences were present between the user groups and how they would impact upon the ability of these user groups to interact with a BCI. APPROACH: Electrophysiological differences between patient groups and healthy users are measured in terms of sensorimotor rhythm deflections from baseline during MI, electroencephalogram microstate scalp maps and strengths of inter-channel phase synchronization. Additionally, using a common spatial pattern algorithm and a linear discriminant analysis classifier, the classification accuracy was calculated and compared between groups. MAIN RESULTS: It is seen that both patient groups (tetraplegic and paraplegic) have some significant differences in event-related desynchronization strengths, exhibit significant increases in synchronization and reach significantly lower accuracies (mean (M) = 66.1%) than the group of healthy subjects (M = 85.1%). SIGNIFICANCE: The results demonstrate significant differences in electrophysiological correlates of motor control between healthy individuals and those individuals who stand to benefit most from BCI technology (individuals with SCI). They highlight the difficulty in directly translating results from healthy subjects to participants with SCI and the challenges that, therefore, arise in providing BCIs to such individuals.
An LDA and probability-based classifier for the diagnosis of Alzheimer's Disease from structural MRI
Resumo:
In this paper a custom classification algorithm based on linear discriminant analysis and probability-based weights is implemented and applied to the hippocampus measurements of structural magnetic resonance images from healthy subjects and Alzheimer’s Disease sufferers; and then attempts to diagnose them as accurately as possible. The classifier works by classifying each measurement of a hippocampal volume as healthy controlsized or Alzheimer’s Disease-sized, these new features are then weighted and used to classify the subject as a healthy control or suffering from Alzheimer’s Disease. The preliminary results obtained reach an accuracy of 85.8% and this is a similar accuracy to state-of-the-art methods such as a Naive Bayes classifier and a Support Vector Machine. An advantage of the method proposed in this paper over the aforementioned state of the art classifiers is the descriptive ability of the classifications it produces. The descriptive model can be of great help to aid a doctor in the diagnosis of Alzheimer’s Disease, or even further the understand of how Alzheimer’s Disease affects the hippocampus.
Resumo:
In this paper we show the results of a comparison simulation study for three classification techniques: Multinomial Logistic Regression (MLR), No Metric Discriminant Analysis (NDA) and Linear Discriminant Analysis (LDA). The measure used to compare the performance of the three techniques was the Error Classification Rate (ECR). We found that MLR and LDA techniques have similar performance and that they are better than DNA when the population multivariate distribution is Normal or Logit-Normal. For the case of log-normal and Sinh(-1)-normal multivariate distributions we found that MLR had the better performance.
Resumo:
Thirty-six Madeira wine samples from Boal, Malvazia, Sercial and Verdelho white grape varieties were analyzed in order to estimate the free fraction of monoterpenols and C13 norisoprenoids (terpenoid compounds) using dynamic headspace solid phase micro-extraction (HS-SPME) technique coupled with gas chromatography–mass spectrometry (GC–MS). The average values from three vintages (1998–2000) show that these wines have characteristic profiles of terpenoid compounds. Malvazia wines exhibits the highest values of total free monoterpenols, contrary to Verdelho wines which had the lowest levels of terpenoids but produced the highest concentration of farnesol. The use of multivariate analysis techniques allows establishing relations between the compounds and the varieties under investigation. Principal component analysis (PCA) and linear discriminant analysis (LDA) were applied to the obtained matrix data. A good separation and classification power between the four groups as a function of their varietal origin was observed.
Resumo:
Boal, Malvasia, Sercial and Verdelho are the main white grape varieties used in Madeira wine production. To estimate the free fraction of varietal aroma compounds of these varieties, 39 samples of musts were analysed to determine their content of monoterpenols and C13 norisoprenoids (terpenoids), using dynamic headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry. The r-values for linearity studies of the analytical method used, varied between 0.977 (nerolidol) and 0.999 (linalool). The repeatability for each compound varied between 2.5% (citronellol) and 11.8% (β-ionone). The mean values from three vintages (1998, 1999 and 2000) confirmed that these musts have differentiated contents of terpenoids. In opposition to Verdelho musts, Malvasia showed the highest free terpenoids content. In order to establish relations between the compounds and the varieties under investigation, principal component analysis and linear discriminant analysis were applied to the data, revealing a good separation and classification power between the four groups as a function of varietal origin.
Resumo:
This study determines for the first time Na, K, Ca, Mg, Fe, Cu, Zn, Mn, Sr, Li and Rb contents in wines from the archipelagos of Madeira and Azores (Portugal). The greater part of the mean content for the different parameters fell within the ranges described in the literature, except for sodium whose higher content may be due to the effect of marine spray. ANOVA was used to establish the metals with significant differences in mean content between the wines from both archipelagos, between table and liquor wines of Madeira, and between wines of Pico and Terceira Islands from the Azores archipelago. Principal component analysis shows differences in the wines according to the wine-making process and/or the equipment employed. Stepwise linear discriminant analysis achieves a good classification and validation of wines according to the archipelago of origin, and the island in the case of Azores wines.
Resumo:
BACKGROUND: Non-invasive diagnostic strategies aimed at identifying biomarkers of cancer are of great interest for early cancer detection. Urine is potentially a rich source of volatile organic metabolites (VOMs) that can be used as potential cancer biomarkers. Our aim was to develop a generally reliable, rapid, sensitive, and robust analytical method for screening large numbers of urine samples, resulting in a broad spectrum of native VOMs, as a tool to evaluate the potential of these metabolites in the early diagnosis of cancer. METHODS: To investigate urinary volatile metabolites as potential cancer biomarkers, urine samples from 33 cancer patients (oncological group: 14 leukaemia, 12 colorectal and 7 lymphoma) and 21 healthy (control group, cancer-free) individuals were qualitatively and quantitatively analysed. Dynamic solid-phase microextraction in headspace mode (dHS-SPME) using a carboxenpolydimethylsiloxane (CAR/PDMS) sorbent in combination with GC-qMS-based metabolomics was applied to isolate and identify the volatile metabolites. This method provides a potential non-invasive method for early cancer diagnosis as a first approach. To fulfil this objective, three important dHS-SPME experimental parameters that influence extraction efficiency (fibre coating, extraction time and temperature of sampling) were optimised using a univariate optimisation design. The highest extraction efficiency was obtained when sampling was performed at 501C for 60min using samples with high ionic strengths (17% sodium chloride, wv 1) and under agitation. RESULTS: A total of 82 volatile metabolites belonging to distinct chemical classes were identified in the control and oncological groups. Benzene derivatives, terpenoids and phenols were the most common classes for the oncological group, whereas ketones and sulphur compounds were the main classes that were isolated from the urine headspace of healthy subjects. The results demonstrate that compound concentrations were dramatically different between cancer patients and healthy volunteers. The positive rates of 16 patients among the 82 identified were found to be statistically different (Po0.05). A significant increase in the peak area of 2-methyl3-phenyl-2-propenal, p-cymene, anisole, 4-methyl-phenol and 1,2-dihydro-1,1,6-trimethyl-naphthalene in cancer patients was observed. On average, statistically significant lower abundances of dimethyl disulphide were found in cancer patients. CONCLUSIONS: Gas chromatographic peak areas were submitted to multivariate analysis (principal component analysis and supervised linear discriminant analysis) to visualise clusters within cases and to detect the volatile metabolites that are able to differentiate cancer patients from healthy individuals. Very good discrimination within cancer groups and between cancer and control groups was achieved.
Resumo:
In this study the effect of the cultivar on the volatile profile of five different banana varieties was evaluated and determined by dynamic headspace solid-phase microextraction (dHS-SPME) combined with one-dimensional gas chromatography–mass spectrometry (1D-GC–qMS). This approach allowed the definition of a volatile metabolite profile to each banana variety and can be used as pertinent criteria of differentiation. The investigated banana varieties (Dwarf Cavendish, Prata, Maçã, Ouro and Platano) have certified botanical origin and belong to the Musaceae family, the most common genomic group cultivated in Madeira Island (Portugal). The influence of dHS-SPME experimental factors, namely, fibre coating, extraction time and extraction temperature, on the equilibrium headspace analysis was investigated and optimised using univariate optimisation design. A total of 68 volatile organic metabolites (VOMs) were tentatively identified and used to profile the volatile composition in different banana cultivars, thus emphasising the sensitivity and applicability of SPME for establishment of the volatile metabolomic pattern of plant secondary metabolites. Ethyl esters were found to comprise the largest chemical class accounting 80.9%, 86.5%, 51.2%, 90.1% and 6.1% of total peak area for Dwarf Cavendish, Prata, Ouro, Maçã and Platano volatile fraction, respectively. Gas chromatographic peak areas were submitted to multivariate statistical analysis (principal component and stepwise linear discriminant analysis) in order to visualise clusters within samples and to detect the volatile metabolites able to differentiate banana cultivars. The application of the multivariate analysis on the VOMs data set resulted in predictive abilities of 90% as evaluated by the cross-validation procedure.
Resumo:
The volatile composition of different apple varieties of Malus domestica Borkh. species from different geographic regions at Madeira Islands, namely Ponta do Pargo (PP), Porto Santo (PS), and Santo da Serra (SS) was established by headspace solid-phase microextraction (HS-SPME) procedure followed by GC-MS (GC-qMS) analysis. Significant parameters affecting sorption process such as fiber coating, extraction temperature,extractiontime,sampleamount,dilutionfactor,ionicstrength,anddesorption time,wereoptimizedanddiscussed.TheSPMEfibercoatedwith50/30 lmdivinylbenzene/carboxen/PDMS (DVB/CAR/PDMS) afforded highest extraction efficiency of volatile compounds, providing the best sensitivity for the target volatiles, particularly whenthesampleswereextractedat508Cfor30 minwithconstantmagneticstirring. A qualitative and semi-quantitative analysis between the investigated apple species has been established. It was possible to identify about 100 of volatile compounds amongpulp(46,45,and39),peel(64,60,and64),andentirefruit(65,43,and50)inPP, PS,andSSapples,respectively.Ethylesters,terpenes,andhigheralcoholswerefound tobethemostrepresentativevolatiles. a-Farnesene,hexan-1-olandhexyl2-methylbutyratewerethecompoundsfoundinthevolatileprofileofstudiedappleswiththelargestGCarea,representing,onaverage,24.71,14.06,and10.80%ofthetotalvolatilefractionfromPP,PS,andSSapples.InPPentireapple,themostabundantcompoundsidentified were a-farnesene (30.49%), the unknown compound m/z (69, 101, 157) (21.82%) andhexylacetate(6.57%).RegardingPSentireapplethemajorcompoundswere a-farnesene(16.87%),estragole(15.43%),hexan-1-ol(10.94),andE-2-hexenal(10.67).a-Farnesene(30.3%),hexan-1-ol(18.90%),2-methylbutanoicacid(4.7%),andpentan-1-ol(4.6%) werealsofoundasSSentireapplevolatilespresentinahigherrelativecontent.Principal component analysis (PCA) of the results clustered the apples into three groups according to geographic origin. Linear discriminant analysis (LDA) was performed in order to detect the volatile compounds able to differentiate the three kinds of apples investigated. The most important contributions to the differentiation of the PP, PS, and SS apples were ethyl hexanoate, hexyl 2-methylbutyrate, E,E-2,4-heptadienal, pethylstyrene,andE-2-hexenal.
Resumo:
In this paper we deal with the problem of feature selection by introducing a new approach based on Gravitational Search Algorithm (GSA). The proposed algorithm combines the optimization behavior of GSA together with the speed of Optimum-Path Forest (OPF) classifier in order to provide a fast and accurate framework for feature selection. Experiments on datasets obtained from a wide range of applications, such as vowel recognition, image classification and fraud detection in power distribution systems are conducted in order to asses the robustness of the proposed technique against Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and a Particle Swarm Optimization (PSO)-based algorithm for feature selection.
Resumo:
This paper presents the study of computational methods applied to histological texture analysis in order to identify plant species, a very difficult task due to the great similarity among some species and presence of irregularities in a given species. Experiments were performed considering 300 ×300 texture windows extracted from adaxial surface epidermis from eight species. Different texture methods were evaluated using Linear Discriminant Analysis (LDA). Results showed that methods based on complexity analysis perform a better texture discrimination, so conducting to a more accurate identification of plant species. © 2009 Springer Berlin Heidelberg.