965 resultados para Lignin peroxidase
Resumo:
The removal of important textile dyes by turnip peroxidase (TNP) was evaluated. The textile effluents besides the residual dyes contain also chemical auxiliaries such as salts, dispersing and wetting agents. The effect of these was evaluated in the removal of the dyes reactive blue 21 and reactive blue 19 by TNP in synthetic effluents. A decrease of the efficency decolorization was observed. The action of the enzyme on colour removal of dye mixture was equivalent to the dyes alone. The chemical demand of oxygen in the effluent after enzymatic treatment had a significant increase in relation to the untreated effluent.
Resumo:
An enzymatic spectrophotometric method for the determination of methyldopa in a dissolution test of tablets was developed using peroxidase from radish (Raphanus sativus). The enzyme was extracted from radish roots using a phosphate buffer of pH 6.5 and partially purified through centrifugation. The supernatant was used as a source of peroxidase. The methyldopachrome resulting from the oxidation of methyldopa catalyzed by peroxidase was monitored at 480 nm. The enzymatic activity was stable for a period of at least 25 days when the extract was stored at 4 or -20 ºC. The method was validated according to RDC 899 and ICH guidelines. The calibration graph was linear in the range 200-800 µg mL-1, with a correlation coefficient of 0.9992. The limits of detection and quantification in the dissolution medium were 36 and 120 µg mL-1, respectively. Recovery was greater than 98.9%. This method can be applied for the determination of methyldopa in dissolution tests of tablets without interference from the excipients.
Resumo:
The dissertation is based on four articles dealing with recalcitrant lignin water purification. Lignin, a complicated substance and recalcitrant to most treatment technologies, inhibits seriously pulp and paper industry waste management. Therefore, lignin is studied, using WO as a process method for its degradation. A special attention is paid to the improvement in biodegradability and the reduction of lignin content, since they have special importance for any following biological treatment. In most cases wet oxidation is not used as a complete ' mineralization method but as a pre treatment in order to eliminate toxic components and to reduce the high level of organics produced. The combination of wet oxidation with a biological treatment can be a good option due to its effectiveness and its relatively low technology cost. The literature part gives an overview of Advanced Oxidation Processes (AOPs). A hot oxidation process, wet oxidation (WO), is investigated in detail and is the AOP process used in the research. The background and main principles of wet oxidation, its industrial applications, the combination of wet oxidation with other water treatment technologies, principal reactions in WO, and key aspects of modelling and reaction kinetics are presented. There is also given a wood composition and lignin characterization (chemical composition, structure and origin), lignin containing waters, lignin degradation and reuse possibilities, and purification practices for lignin containing waters. The aim of the research was to investigate the effect of the operating conditions of WO, such as temperature, partial pressure of oxygen, pH and initial concentration of wastewater, on the efficiency, and to enhance the process and estimate optimal conditions for WO of recalcitrant lignin waters. Two different waters are studied (a lignin water model solution and debarking water from paper industry) to give as appropriate conditions as possible. Due to the great importance of re using and minimizing the residues of industries, further research is carried out using residual ash of an Estonian power plant as a catalyst in wet oxidation of lignin-containing water. Developing a kinetic model that includes in the prediction such parameters as TOC gives the opportunity to estimate the amount of emerging inorganic substances (degradation rate of waste) and not only the decrease of COD and BOD. The degradation target compound, lignin is included into the model through its COD value (CODligning). Such a kinetic model can be valuable in developing WO treatment processes for lignin containing waters, or other wastewaters containing one or more target compounds. In the first article, wet oxidation of "pure" lignin water was investigated as a model case with the aim of degrading lignin and enhancing water biodegradability. The experiments were performed at various temperatures (110 -190°C), partial oxygen pressures (0.5 -1.5 MPa) and pH (5, 9 and 12). The experiments showed that increasing the temperature notably improved the processes efficiency. 75% lignin reduction was detected at the lowest temperature tested and lignin removal improved to 100% at 190°C. The effect of temperature on the COD removal rate was lower, but clearly detectable. 53% of organics were oxidized at 190°C. The effect of pH occurred mostly on lignin removal. Increasing the pH enhanced the lignin removal efficiency from 60% to nearly 100%. A good biodegradability ratio (over 0.5) was generally achieved. The aim of the second article was to develop a mathematical model for "pure" lignin wet oxidation using lumped characteristics of water (COD, BOD, TOC) and lignin concentration. The model agreed well with the experimental data (R2 = 0.93 at pH 5 and 12) and concentration changes during wet oxidation followed adequately the experimental results. The model also showed correctly the trend of biodegradability (BOD/COD) changes. In the third article, the purpose of the research was to estimate optimal conditions for wet oxidation (WO) of debarking water from the paper industry. The WO experiments were' performed at various temperatures, partial oxygen pressures and pH. The experiments showed that lignin degradation and organics removal are affected remarkably by temperature and pH. 78-97% lignin reduction was detected at different WO conditions. Initial pH 12 caused faster removal of tannins/lignin content; but initial pH 5 was more effective for removal of total organics, represented by COD and TOC. Most of the decrease in organic substances concentrations occurred in the first 60 minutes. The aim of the fourth article was to compare the behaviour of two reaction kinetic models, based on experiments of wet oxidation of industrial debarking water under different conditions. The simpler model took into account only the changes in COD, BOD and TOC; the advanced model was similar to the model used in the second article. Comparing the results of the models, the second model was found to be more suitable for describing the kinetics of wet oxidation of debarking water. The significance of the reactions involved was compared on the basis of the model: for instance, lignin degraded first to other chemically oxidizable compounds rather than directly to biodegradable products. Catalytic wet oxidation of lignin containing waters is briefly presented at the end of the dissertation. Two completely different catalysts were used: a commercial Pt catalyst and waste power plant ash. CWO showed good performance using 1 g/L of residual ash gave lignin removal of 86% and COD removal of 39% at 150°C (a lower temperature and pressure than with WO). It was noted that the ash catalyst caused a remarkable removal rate for lignin degradation already during the pre heating for `zero' time, 58% of lignin was degraded. In general, wet oxidation is not recommended for use as a complete mineralization method, but as a pre treatment phase to eliminate toxic or difficultly biodegradable components and to reduce the high level of organics. Biological treatment is an appropriate post treatment method since easily biodegradable organic matter remains after the WO process. The combination of wet oxidation with subsequent biological treatment can be an effective option for the treatment of lignin containing waters.
Resumo:
Empregou-se nesse trabalho alguns vegetais como fonte de peroxidase. Após a determinação de proteína total, atividade e atividade específica, selecionou-se o extrato bruto da abobrinha (Cucurbita pepo) como fonte dessa enzima para ser empregado em um sistema de análise por injeção em fluxo com detecção espectrofotométrica para a determinação de diversos compostos fenólicos (e.g. fenol, catecol, 2,4-diclorofenol, 4-cloro-3-metilfenol, 4-acetamidofenol, 4-clorofenol, 2,4,6-triclorofenol, o-cresol, m-cresol, p-cresol e hidroquinona). Após a otimização desse sistema em fluxo, o mesmo foi empregado na determinação de compostos fenólicos em águas residuárias de indústrias da região de São Carlos-SP, no intervalo de concentração de 2,0x10-4 a 4,0x10-3 mol L-1, com LD de 8,0x10-5 mol L-1 e freqüência analítica de 58 h-1. A recuperação de fenol em 3 amostras variou de 98,3 a 106, 2% e o RSD foi menor que 1,2% para soluções de fenol nas concentrações de 6,0x10-4 e 8,0x10-4 mol l-1 (n=10).
Resumo:
Pothomorphe umbellata (L.) known on Brazil as Caapeba has a number of popular medicinal use, and it has been studied in relation to its pharmacological activity. Peroxidase specific activity (units/mg protein) was evaluated in callus cell culture samples of the P.umbellata, grown in two different MS medium (media 1 and media 2), submitted to 16 hours photoperiod or kept in darkness. Cell growth rate curve showed that the best growth indices were observed when media 2 submitted to the photoperiod regime was used, followed by the same media kept in darkness (stress condition). The results obtained also showed that the cell culture grown under stress conditions (darkness) lead to high content of peroxidase enzyme (an increase of 700% was observed). Kinetic constant values of 3.3 mmol.L-1 and 2,8 sec-1 were obtained for kM and v max,, respectively, using guaiacol as enzyme substrate.
Resumo:
The adsorption kinetics and equilibrium of methylene blue (MB) onto reticulated formic lignin (RFL) from sugar cane bagasse was studied. The adsorption process is pH, temperature and ionic strength (µ) dependent and obeys the Langmuir model. Conditions for higher adsorption rate and capacity were determined. The faster adsorption (12 hours) and higher adsorption capacity (34.20 mg.g-1) were observed at pH = 5.8 (acetic acid-sodium acetate aqueous buffer), 50 ºC and 0.1 ionic strength. Under temperature (50 ºC) control and occasional mechanical stirring it took from 1 to 10 days to reach the equilibrium.
Resumo:
O comportamento eletroquímico da enzima peroxidase (HRP) foi estudado utilizando o peróxido de hidrogênio como substrato enzimático e o ácido 5-aminossalicílico (5-ASA) como mediador de elétrons sobre eletrodo de grafite. Diversos parâmetros foram otimizados, tais como, o potencial aplicado à técnica amperométrica fixado em -0,125V, a solução tampão fosfato-citrato 0,1 mol L-1 pH 5,0 como eletrólito suporte e a proporção entre o 5-ASA e H2O2 em 1:7, entre outros. Foi observada a catálise da reação de oxidação do peróxido de hidrogênio na presença da enzima HRP e do mediador 5-ASA. O produto dessa oxidação foi reduzido na superfície do eletrodo, evidenciando um significativo aumento na intensidade da corrente catódica.
Resumo:
Enzimas Peroxidases são heme-proteínas encontradas nos diferentes organismos vivos, especialmente vegetais, apresentam importante papel fisiológico/bioquímico como proteção contra microorganismos invasores. A soja, um dos mais importantes produtos para o agronegócio brasileiro apresenta na casca de suas sementes (subproduto) alta atividade de peroxidase, denominada soybean peroxidase,com potencial de utilização em métodos analíticos clínicos. A proposta do trabalho foi aplicar o planejamento fatorial para otimização das condições extração da enzima, definição das condições ótimas de atividade (pH e temperatura), utilizando metodologia de superfície de resposta. Os dados obtidos com clara definição foram: i) extração em pó cetonico, ii) meio reacional: pH 3,3, volume da amostra contendo a enzima 330 µL - 340 µL, peróxido de hidrogênio 4,2 mmol.L-1 150 µL, tempo de reação 20 segundos, temperatura 50º C, substrato guaiacol 30mmol.L-1 300 µL, e 0,1 mol.L-1 de NaCl. O uso da dessa metodologia para definição das condições de extração e estudos cinético-enzimáticos da peroxidase de soja foram eficientes e mais precisos, comparado a metodologia de variações/repetições (tentativa e erro).
Resumo:
Verificou-se o efeito de indutores de resistência bióticos e abióticos nas atividades de quitinase e peroxidase e na redução da severidade da ferrugem do eucalipto causada por Puccinia psidii. Para isso, mudas de dois clones de eucalipto (Eucalyptus grandis x E. urophylla) denominados VR e C0, com sessenta dias de idade, mantidas em casa de vegetação, receberam tratamentos com Bion® (Acibenzolar-S-metil-ASM), Agro-Mos®, Dipel®, Ecolife40®, Crop-set® e uma preparação obtida a partir de Saccharomyces cerevisiae, 5 dias antes da inoculação com o patógeno. Uma suspensão de uredósporos de P. psidii, coletados a partir de plantas naturalmente infectadas, foi calibrada para 5 x 10(4) uredósporos/ mL. A inoculação foi realizada na face abaxial das folhas e a avaliação se deu 15 dias após, estimando-se a severidade da doença por meio de escala de notas. Os tratamentos ASM, preparado de S. cerevisiae e Ecolife® apresentaram os melhores resultados de controle da doença e os demais tratamentos não se mostraram eficazes para o controle. O aumento de atividade das enzimas quitinase e peroxidase foi observado em ambos os clones, previamente tratados com os indutores(ASM e S. cerevisiae), 48 horas após a inoculação com o fungo.
Resumo:
In the present work we studied the effect of inoculating corn plants with the maize bushy stunt phytoplasma on the activity of the enzymes peroxidase, β-1,3 glucanase and chitinase. The experiments were carried out inside a greenhouse. Plants of a resistant and a susceptible corn hybrid were inoculated by using infective Dalbulus maidis leafhoppers 10 days after sowing. When symptoms started to appear, leaf samples were collected at different periods to quantify enzyme activity. The results showed an increase in the activity of the three enzymes in inoculated plants of both hybrids. In general, the values observed for the level of the different enzymes were higher in the susceptible hybrid when compared to the resistant one. Thus, the increases in peroxidase, β-1,3 glucanase and chitinase levels in inoculated plants are evidence of changes in the host metabolism caused by the phytoplasma. On the other hand, since the increases could not be correlated with plant resistance further studies are needed to explain such changes.
Resumo:
ABSTRACT The essay objective was to correlate lignin content resulting from tigmomorphogenesis induced by stem swaying with survival and post-planting growth of P. taeda seedlings. Seedlings were subjected to daily frequencies (0, 5, 10, 20 and 40 movements) of stem swaying for 60 days. By the end of the treatments, we determined lignin content of below and aboveground seedling tissues. Four replicates per treatment were planted in a area cultivated with pines. Ninety days after planting, survival and increments of seedling height, stem diameter and stem volume were quantified. Application of 20 stem swayings increased lignin in both below and aboveground plant tissues. Outplanted seedling survival was reduced with 40 stem swayings while growth increments were increased with both 10 and 20 stem swayings. Lignin content from belowground plant tissues was positively correlated with outplanted seedling survival while lignin from aboveground tissues correlated with height and stem volume increments. P. taeda seedlings with higher lignin content have higher survival chances after planting.
Resumo:
Diplomityön tarkoituksena oli puhdistaa kraft ligniiniä. Raaka-aineena käytettiin pääasiassa Lignoboost -menetelmän kaltaisella menetelmällä havupuu- mustalipeästä saostettua ligniiniä. Diplomityön ensimmäisenä tavoitteena oli löytää menetelmä, jolla voidaan poistaa kraft ligniinistä tuhkaa. Työssä raaka-aineena käytetyn saostetun ligniinin tuhkapitoisuus oli noin 3 %. Tarkoituksena oli saada laskettua tuhkapitoisuutta uudelleenlieton, suodatuksen ja pesun avulla. Työn toisena tavoitteena oli hiilihydraattien poisto kraft ligniinistä. Hiilihydraatit, pääosin hemiselluloosaa, ovat kiinnittyneet ligniiniin vahvoin kovalenttisin sidoksin. Aiempien kokemusten perusteella hemiselluloosat eivät irtoa ligniinistä vesipesun yhteydessä, vaan niiden irrottaminen vaatii onnistuakseen happo-, entsyymi- tai mikrobikäsittelyn, mikäli halutaan säilyttää ligniinin rakenne muuttumattomana. Tässä työssä käytetyt kraft ligniinin puhdistusmenetelmät olivat lietto, happohydrolyysi ja entsymaattinen hydrolyysi, joista kumpikin sisälsi ligniinin uudelleenlieton, suodatuksen ja muodostuneen kakun pesun vedellä.
Resumo:
Myriophyllum aquaticum é uma planta perene, herbácea, que pode se desenvolver totalmente submersa ou com a porção terminal dos ramos acima da superfície da água. É também considerada uma planta daninha que possui elevado potencial de colonização, o qual, dependendo da densidade populacional, pode causar aumento no teor de matéria orgânica e redução de oxigênio na água, comprometendo a qualidade da água e seus usos múltiplos. O objetivo do presente trabalho foi verificar a influência do cobre na atividade da pirogalol peroxidase de plantas de M. aquaticum submetidas à solução nutritiva contendo concentrações de cobre de 1,2; 11,2; 21,2; 31,2; e 41,2 µg L-1. O experimento foi conduzido em um delineamento experimental inteiramente casualizado, com quatro repetições e cinco tratamentos, aos quais as plantas foram submetidas durante 21 dias. Aos 81 dias após a instalação das mudas em solução nutritiva contendo os diferentes níveis de cobre, as folhas foram colhidas a partir do ápice da planta até o final do ramo, que não estavam em contato com a solução. Esse material fresco foi envolvido por plástico transparente e papel-alumínio e, a seguir, congelado em nitrogênio líquido, sendo armazenado em freezer a -20 ºC até o momento da determinação da atividade da enzima pirogalol peroxidase. A atividade da enzima foi progressiva com o aumento das doses de cobre. As plantas cultivadas com 40 µg L-1 de Cu2+ após três semanas, com base em avaliação visual, apresentaram redução no desenvolvimento.
Resumo:
Lignin, after cellulose, is the second most abundant biopolymer on Earth, accounting for 30% of the organic carbon in the biosphere. It is considered an important evolutionary adaptation of plants during their transition from the aquatic environment to land, since it bestowed the early tracheophytes with physical support to stand upright and enabled long-distance transport of water and solutes by waterproofing the vascular tissue. Although essential for plant growth and development, lignin is the major plant cell wall component responsible for biomass recalcitrance to industrial processing. The fact that lignin is a non-linear aromatic polymer built with chemically diverse and poorly reactive linkages and a variety of monomer units precludes the ability of any single enzyme to properly recognize and degrade it. Consequently, the use of lignocellulosic feedstock as a renewable and sustainable resource for the production of biofuels and bio-based materials will depend on the identification and characterization of the factors that determine plant biomass recalcitrance, especially the highly complex phenolic polymer lignin. Here, we summarize the current knowledge regarding lignin metabolism in plants, its effect on biomass recalcitrance and the emergent strategies to modify biomass recalcitrance through metabolic engineering of the lignin pathway. In addition, the potential use of sugarcane as a second-generation biofuel crop and the advances in lignin-related studies in sugarcane are discussed.
Resumo:
Thiobarbituric acid reactant substances (TBARs) content, and the activities of glucose-6-phosphate dehydrogenase (G6PDh), citrate synthase (CS), Cu/Zn- and Mn-superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPX) were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes (MLN)) and skeletal muscles (gastrocnemius and soleus) of adrenodemedullated (ADM) rats. The results were compared with those obtained for sham-operated rats. TBARs content was reduced by adrenodemedullation in the lymphoid organs (MLN (28%), thymus (40%) and spleen (42%)) and gastrocnemius muscle (67%). G6PDh activity was enhanced in the MLN (69%) and reduced in the spleen (28%) and soleus muscle (75%). CS activity was reduced in all tissues (MLN (75%), spleen (71%), gastrocnemius (61%) and soleus (43%)), except in the thymus which displayed an increment of 56%. Cu/Zn-SOD activity was increased in the MLN (126%), thymus (223%), spleen (80%) and gastrocnemius muscle (360%) and was reduced in the soleus muscle (31%). Mn-SOD activity was decreased in the MLN (67%) and spleen (26%) and increased in the thymus (142%), whereas catalase activity was reduced in the MLN (76%), thymus (54%) and soleus muscle (47%). It is particularly noteworthy that in ADM rats the activity of glutathione peroxidase was not detectable by the method used. These data are consistent with the possibility that epinephrine might play a role in the oxidative stress of the lymphoid organs. Whether this fact represents an important mechanism for the establishment of impaired immune function during stress remains to be elucidated.