966 resultados para Lightweight and heavyweight concrete


Relevância:

100.00% 100.00%

Publicador:

Resumo:

When a material fails under a number of repeated loads, each smaller than the ultimate static strength, a fatigue failure is said to have taken place. Many studies have been made to characterize the fatigue behavior of various engineering materials. The results of some of these studies have proved invaluable in the evaluation and prediction of the fatigue strength of structural materials. Considerable time and effort have gone into the evaluation of the fatigue behavior of metals. These early studies were motivated by practical considerations: the first fatigue tests were performed on materials that had been observed to fail after repeated loading of a magnitude less than that required for failure under the application of a single load. Mine-hoist chains (1829), railway axles (1852), and steam engine parts were among the first structural components to be recognized as exhibiting fatigue behavior. Since concrete is usually subjected to static loading rather than cyclic loading, need for knowledge of the fatigue behavior of concrete has lagged behind that of metals. One notable exception to this, however, is in the area of highway and airfield pavement design. Due to the fact that the fatigue behavior of concrete must be understood in the design of pavements and reinforced concrete bridges, highway engineers have provided the motivation for concrete fatigue studies since the 1920s.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to frequent accidental damage to prestressed concrete (P/C) bridges caused by impact from overheight vehicles, a project was initiated to evaluate the strength and load distribution characteristics of damaged P/C bridges. A comprehensive literature review was conducted. It was concluded that only a few references pertain to the assessment and repair of damaged P/C beams. No reference was found that involves testing of a damaged bridge(s) as well as the damaged beams following their removal. Structural testing of two bridges was conducted in the field. The first bridge tested, damaged by accidental impact, was the westbound (WB) I-680 bridge in Beebeetown, Iowa. This bridge had significant damage to the first and second beams consisting of extensive loss of section and the exposure of numerous strands. The second bridge, the adjacent eastbound (EB) structure, was used as a baseline of the behavior of an undamaged bridge. Load testing concluded that a redistribution of load away from the damaged beams of the WB bridge was occurring. Subsequent to these tests, the damaged beams in the WB bridge were replaced and the bridge retested. The repaired WB bridge behaved, for the most part, like the undamaged EB bridge indicating that the beam replacement restored the original live load distribution patterns. A large-scale bridge model constructed for a previous project was tested to study the changes in behavior due to incrementally applied damage consisting initially of only concrete removal and then concrete removal and strand damage. A total of 180 tests were conducted with the general conclusion that for exterior beam damage, the bridge load distribution characteristics were relatively unchanged until significant portions of the bottom flange were removed along with several strands. A large amount of the total applied moment to the exterior beam was redistributed to the interior beam of the model. Four isolated P/C beams were tested, two removed from the Beebeetown bridge and two from the aforementioned bridge model. For the Beebeetown beams, the first beam, Beam 1W, was tested in an "as removed" condition to obtain the baseline characteristics of a damaged beam. The second beam, Beam 2W, was retrofit with carbon fiber reinforced polymer (CFRP) longitudinal plates and transverse stirrups to strengthen the section. The strengthened Beam was 12% stronger than Beam 1W. Beams 1 and 2 from the bridge model were also tested. Beam 1 was not damaged and served as the baseline behavior of a "new" beam while Beam 2 was damaged and repaired again using CFRP plates. Prior to debonding of the plates from the beam, the behavior of both Beams 1 and 2 was similar. The retrofit beam attained a capacity greater than a theoretically undamaged beam prior to plate debonding. Analytical models were created for the undamaged and damaged center spans of the WB bridge; stiffened plate and refined grillage models were used. Both models were accurate at predicting the deflections in the tested bridge and should be similarly accurate in modeling other P/C bridges. The moment fractions per beam were computed using both models for the undamaged and damaged bridges. The damaged model indicates a significant decrease in moment in the damaged beams and a redistribution of load to the adjacent curb and rail as well as to the undamaged beam lines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chloride-ions penetrating into bridge decks and corroding the steel have been a major problem. As the steel corrodes it exerts stresses on the surrounding concrete. When the stresses exceed the strength of the concrete, cracks or delaminations occur. This, of course, causes deterioration and spalling of bridge deck surfaces. Both the Latex and Iowa Method were used to repair bridge decks for this project. The concrete was removed down to the steel and replaced with approximately 1 1/2 inches of low slump or latex modified concrete. The removal of unsound concrete below the top layer of steel was sometimes necessary. The objective of this project was to determine if the bridge overlays would provide a cost effective method of rehabilitation. To do this, unsound and delaminated concrete was removed and replaced by an overlay of low slump or latex modified concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This manual is a summary of the findings of a comprehensive study. Its purpose is to provide engineers with the information they need to make educated decisions on the use of ternary mixtures for constructing concrete structures. It discusses the effects of ternary mixtures on fresh and hardened mixture properties and on concrete sustainability; factors that need to be considered for both structural and mixture design; quality control issues; and three example mixtures from constructed projects

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iowa has approximately 1000 bridges that have been overlaid with a nominal 2" of portland cement concrete. A Delamtect survey of a sampling of the older overlaid bridges indicated delaminations in several of them. Eventually these bridges as well as those that have not received an overlay must be programmed for rehabilitation. Prior to rehabilitation the areas which are delaminated must be identified. There are currently two standard methods of determining delaminated areas in bridge decks; sounding with a metal object or a chain drag and sounding with an electro-mechanical sounding system (Delamtect). Sounding with a metal object or chain drag is time consuming and the accuracy is dependent on the ear of the operator and may be affected by traffic noise. The Delamtect requires less field time but the graphical traces require that data reduction be done in the office. A recently developed method of detecting delamination is infrared thermography. This method is based on the temperature difference between sound and delaminated concrete. A contract was negotiated with Donohue and Associates, Inc. of Sheboygan, Wisconsin, to survey 18 p.c. concrete overlaid bridge decks in Iowa using the infrared thermography method of detecting delaminations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A field program of strain and deflection measurements was conducted by the Construction Technology Laboratories (CTL) for the Iowa Department of Transportation. The objective of the field measurement program was to obtain information on bonded concrete resurfaced pavements that can be used as a data base for verifying bonded resurfacing thickness design procedures. Data gathered during the investigation included a visual condition survey, engineering properties of the original and resurfacing concrete, load related strain and deflection measurements, and temperature related curl (deflection) measurements. Resurfacing is basically the addition of a surface layer to extend the life of an existing pavement. Portland cement concrete has been used to resurface existing pavements since about 1913.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This final report for Phase 1 of the research on epoxy-coated, prestressing strands in precast prestressed concrete (PC) panels has been published in two volumes. Volume 1--Technical Report contains the problem description, literature review, and survey results; descriptions of the test specimens, experimental tests, and analytical models; discussions of the analytical and experimental results; summary, conclusions, and recommendations; list of references; and acknowledgments. Volume 2--Supplemental Report contains additional information in the form of appendix material for Volume 1 on the questionnaires, strand forces, geometry of the specimens, concrete crack patterns that formed in the strand transfer length and strand development length specimens, concrete strains in the strand transfer length specimens, and load-point deflections and strand-slip measurements for the strand development length specimens. Appendix A contains the questionnaires that were sent to the design agencies and precast concrete producers. A summary of the results to the questions on the surveys are given as the number of respondents who provided the same answers and as paraphrased comments from the respondents. Appendix B contains graphs of strand force versus time, strand force versus temperature, and strand force versus strand cutting sequence for the concrete castings. Appendix C contains figures that show the location of each specimen in the prestress bed, the geometrical configurations for the strand transfer length (T-type) specimens and strand development length (D-type) specimens, and the concrete cracks that developed in some of the T-type specimens when they were prestressed. Appendix D contains figures that show the concrete cracks that developed in the D-type specimens during the strand development length tests. For each of these tests, the sequence of the failure for the specimen is specified. Appendix E contains graphs of concrete strain versus distance from the end of the T-type specimens that were instrumented with internal embedment strain gages. Appendix F contains graphs of load versus load-point deflection and load versus strand-slip for the strand development length tests of the D-type specimens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Major highway concrete pavements in Iowa have exhibited premature deterioration attributed to effects of ettringite formation, alkali-silica expansive reactions, and to frost attack, or some combination of them. These pavements were constructed in the mid- 1980s as non-reinforced, dual-lane, roads ranging in thickness between 200 mm and 300 mm, with skewed joints reinforced with dowels. Deterioration was initially recognized with a darkening of joint regions, which occurred for some pavements as soon as four years after construction. Pavement condition ranges from severe damage to none, and there appeared to be no unequivocal materials or processing variables correlated with failure. Based upon visual examinations, petrographic evaluation, and application of materials models, the deterioration of concrete highway pavements in Iowa appear related to a freeze-thaw failure of the coarse aggregate and the mortar. Crack patterns sub-parallel to the concrete surface transecting the mortar fraction and the coarse aggregate are indicative of freeze-thaw damage of both the mortar and aggregate. The entrained air void system was marginal to substandard, and filling of some of the finer-sized voids by ettringite appears to have further degraded the air void system. The formation of secondary ettringite within the entrained air voids probably reflects a relatively high degree of concrete saturation causing the smaller voids to be filled with pore solution when the concrete freezes. Alkali-silica reaction (ASR) affects some quartz and shale in the fine aggregate, but is not considered to be a significant cause of the deterioration. Delayed ettringite formation was not deemed likely as no evidence of a uniform paste expansion was observed. The lack of field-observed expansion is also evidence against the ASR and DEF modes of deterioration. The utilization of fly ash does not appear to have affected the deterioration as all pavements with or without fly ash exhibiting substantial damage also exhibit significant filling of the entrained air void system, and specimens containing fly ash from sound pavements do not have significant filling. The influence of the mixture design, mixing, and placing must be evaluated with respect to development of an adequate entrained air void system, concrete homogeneity, longterm drying shrinkage, and microcracking. A high-sand mix may have contributed to the difficult mixture characteristics noted upon placement and exacerbate concrete heterogeneity problems, difficulty in developing an adequate entrained air void system, poor consolidation potential, and increased drying shrinkage and cracking. Finally, the availability of moisture must also be considered, as the secondary precipitation of ettringite in entrained air voids indicates they were at least partially filled with pore solution at times. Water availability at the base of the slabs, in joints, and cracks may have provided a means for absorbing water to a point of critical saturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This project utilized information from ground penetrating radar (GPR) and visual inspection via the pavement profile scanner (PPS) in proof-of-concept trials. GPR tests were carried out on a variety of portland cement concrete pavements and laboratory concrete specimens. Results indicated that the higher frequency GPR antennas were capable of detecting subsurface distress in two of the three pavement sites investigated. However, the GPR systems failed to detect distress in one pavement site that exhibited extensive cracking. Laboratory experiments indicated that moisture conditions in the cracked pavement probably explain the failure. Accurate surveys need to account for moisture in the pavement slab. Importantly, however, once the pavement site exhibits severe surface cracking, there is little need for GPR, which is primarily used to detect distress that is not observed visually. Two visual inspections were also conducted for this study by personnel from Mandli Communications, Inc., and the Iowa Department of Transportation (DOT). The surveys were conducted using an Iowa DOT video log van that Mandli had fitted with additional equipment. The first survey was an extended demonstration of the PPS system. The second survey utilized the PPS with a downward imaging system that provided high-resolution pavement images. Experimental difficulties occurred during both studies; however, enough information was extracted to consider both surveys successful in identifying pavement surface distress. The results obtained from both GPR testing and visual inspections were helpful in identifying sites that exhibited materials-related distress, and both were considered to have passed the proof-of-concept trials. However, neither method can currently diagnose materials-related distress. Both techniques only detected the symptoms of materials-related distress; the actual diagnosis still relied on coring and subsequent petrographic examination. Both technologies are currently in rapid development, and the limitations may be overcome as the technologies advance and mature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research has shown that maximum reflectivity, using white cement concrete contributes to increased safety of barrier rails. This research evaluated the whiteness of concrete mixes using white cement, ground granulated blast furnace slag, and natural sand versus manufactured sand. Results indicated mixes containing white cement achieve the highest reflectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discrepancies between the designed and measured camber of precast pretensioned concrete beams (PPCBs) observed by the Iowa DOT have created challenges in the field during bridge construction, causing construction delays and additional costs. This study was undertaken to systematically identify the potential sources of discrepancies between the designed and measured camber from release to time of erection and improve the accuracy of camber estimations in order to minimize the associated problems in the field. To successfully accomplish the project objectives, engineering properties, including creep and shrinkage, of three normal concrete and four high-performance concrete mix designs were characterized. In parallel, another task focused on identifying the instantaneous camber and the variables affecting the instantaneous camber and evaluated the corresponding impact of this factor using more than 100 PPCBs. Using a combination of finite element analyses and the time-step method, the long-term camber was estimated for 66 PPCBs, with due consideration given to creep and shrinkage of concrete, changes in support location and prestress force, and the thermal effects. Utilizing the outcomes of the project, suitable long-term camber multipliers were developed that account for the time-dependent behavior, including the thermal effects. It is shown that by using the recommended practice for the camber measurements together with the proposed multipliers, the accuracy of camber prediction will be greatly improved. Consequently, it is expected that future bridge projects in Iowa can minimize construction challenges resulting from large discrepancies between the designed and actual camber of PPCBs during construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At present, permanent magnet synchronous generators (PMSGs) are of great interest. Since they do not have electrical excitation losses, the highly efficient, lightweight and compact PMSGs equipped with damper windings work perfectly when connected to a network. However, in island operation, the generator (or parallel generators) alone is responsible for the building up of the network and maintaining its voltage and reactive power level. Thus, in island operation, a PMSG faces very tight constraints, which are difficult to meet, because the flux produced by the permanent magnets (PMs) is constant and the voltage of the generator cannot be controlled. Traditional electrically excited synchronous generators (EESGs) can easily meet these constraints, because the field winding current is controllable. The main drawback of the conventional EESG is the relatively high excitation loss. This doctoral thesis presents a study of an alternative solution termed as a hybrid excitation synchronous generator (HESG). HESGs are a special class of electrical machines, where the total rotor current linkage is produced by the simultaneous action of two different excitation sources: the electrical and permanent magnet (PM) excitation. An overview of the existing HESGs is given. Several HESGs are introduced and compared with the conventional EESG from technical and economic points of view. In the study, the armature-reaction-compensated permanent magnet synchronous generator with alternated current linkages (ARC-PMSG with ACL) showed a better performance than the other options. Therefore, this machine type is studied in more detail. An electromagnetic design and a thermal analysis are presented. To verify the operation principle and the electromagnetic design, a down-sized prototype of 69 kVA apparent power was built. The experimental results are demonstrated and compared with the predicted ones. A prerequisite for an ARC-PMSG with ACL is an even number of pole pairs (p = 2, 4, 6, …) in the machine. Naturally, the HESG technology is not limited to even-pole-pair machines. However, the analysis of machines with p = 3, 5, 7, … becomes more complicated, especially if analytical tools are used, and is outside the scope of this thesis. The contribution of this study is to propose a solution where an ARC-PMSG replaces an EESG in electrical power generation while meeting all the requirements set for generators given for instance by ship classification societies, particularly as regards island operation. The maximum power level when applying the technology studied here is mainly limited by the economy of the machine. The larger the machine is, the smaller is the efficiency benefit. However, it seems that machines up to ten megawatts of power could benefit from the technology. However, in low-power applications, for instance in the 500 kW range, the efficiency increase can be significant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this investigation was to evaluate the possibility to enhance certain qualities of facial prostheses. Polymethyl methacrylate is still being used as base mate¬rial or clip carrier material, but it is hard and heavy, and debonding of the silicone from the acrylic base material is a frequent problem. This thesis aims to evaluate the use of fiber-reinforced composite (FRC) as framework material for maxillofacial silicone prostheses. FRC has been used as reinforcement in removable and fixed partial dentures since the 1990s. This material is lightweight and can be fabricated to compress the margins of the prosthesis slightly, to keep it tightly against the skin during jaw movements and facial expressions. Additionally, the use of a thermochromic pigment, colorless in room temperature and red in a cold environment, was studied in order to evaluate the possibility of using this color changing pigment in facial prostheses to mimic the color change of facial skin in cold weather. The tensile bond strength between pre-impregnated, unidirectional FRC and maxillofacial silicone elastomer was studied. Three different bonding agents or primers were compared. Bond strength was improved by one of the primers and by roughening the surface. The effect of a skin compressing glass fiber-reinforced composite framework on facial skin blood flow was studied by using a face mask, constructed with a compression pad corresponding to the outer margin of a glass fiber-reinforced framework beam of a facial prosthesis. The skin blood flow of ten healthy volunteers, aged 23-25 years, was measured during touch, light, and moderate compression of the skin, by using laser Doppler imaging technique. None of the compressions showed any marked effects on local skin blood flow. There were no significant differences between blood flow during compression and at baseline. Maxillofacial silicone elastomer was colored intrinsically with conventional color pigments: a control group containing only conventional pigments was compared to two test groups with 0.2 wt% and 0.6 wt% thermochromic pigment added. The color of the material was measured with a spectrophotometer in room temperature and after storage in a freezer. The color stability of the maxillofacial silicone elastomer colored with thermo¬chromic pigment was evaluated by artificial aging. The color dif¬ference of the L* (lightness) and a* values (redness), comparing color after the samples were stored at room temperature and in a freezer (-19°C), was statistically significant for both 0.2 wt% and 0.6 wt% thermo¬chromic pigment groups. The differences in the b* values (yellowness) were statistically significant for the 0.6 wt% group. Exposure to ultraviolet (UV) radiation led to visually noticeable and statistically signifi¬cant color changes (ΔE) in all color values in both test groups. The specimens containing thermochromic pigment were very sensitive to UV radiation. In conclusion, a framework of fiber-reinforced composite can successfully be bonded to maxillofacial silicone elastomer, and a framework beam, compressing the facial skin, did not remarkably alter the skin blood flow on healthy, young adults. The thermochromic pigment showed color change in maxillofacial silicone elastomer. However, artificial aging showed that it was too sensitive to UV radiation to be used, as such, in maxillofacial prostheses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The writings of John Dewey (1859-1952) and Simone Weil (1909-1943) were analyzed with a view to answering 3 main questions: What is wisdom? How is wisdom connected to experience? How does one educate for a love of wisdom? Using a dialectical method whereby Dewey (a pragmatist) was critiqued by Weil (a Christian Platonist) and vice versa, commonalities and differences were identified and clarified. For both, wisdom involved the application of thought to specific, concrete problems in order to secure a better way of life. For Weil, wisdom was centered on a love of truth that involved a certain way of applying one's attention to a concrete or theoretical problem. Weil believed that nature was subject to a divine wisdom and that a truly democratic society had supernatural roots. Dewey believed that any attempt to move beyond nature would stunt the growth of wisdom. For him, wisdom could be nourished only by natural streams-even if some ofthem were given a divine designation. For both, wisdom emerged through the discipline of work understood as intelligent activity, a coherent relationship between thinking and acting. Although Weil and Dewey differed on how they distinguished these 2 activities, they both advocated a type of education which involved practical experience and confronted concrete problems. Whereas Dewey viewed each problem optimistically with the hope of solving it, Weil saw wisdom in, contemplating insoluble contradictions. For both, educating for a love of wisdom meant cultivating a student's desire to keep thinking in line with acting-wanting to test ideas in action and striving to make sense of actions observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study reports the details of the finite element analysis of eleven shear critical partially prestressed concrete T-beams having steel fibers over partial or full depth. Prestressed T-beams having a shear span to depth ratio of 2.65 and 1.59 that failed in shear have been analyzed using the ‘ANSYS’ program. The ‘ANSYS’ model accounts for the nonlinearity, such as, bond-slip of longitudinal reinforcement, postcracking tensile stiffness of the concrete, stress transfer across the cracked blocks of the concrete and load sustenance through the bridging action of steel fibers at crack interface. The concrete is modeled using ‘SOLID65’- eight-node brick element, which is capable of simulating the cracking and crushing behavior of brittle materials. The reinforcement such as deformed bars, prestressing wires and steel fibers have been modeled discretely using ‘LINK8’ – 3D spar element. The slip between the reinforcement (rebars, fibers) and the concrete has been modeled using a ‘COMBIN39’- nonlinear spring element connecting the nodes of the ‘LINK8’ element representing the reinforcement and nodes of the ‘SOLID65’ elements representing the concrete. The ‘ANSYS’ model correctly predicted the diagonal tension failure and shear compression failure of prestressed concrete beams observed in the experiment. The capability of the model to capture the critical crack regions, loads and deflections for various types of shear failures in prestressed concrete beam has been illustrated.