861 resultados para Light, Colored.
Resumo:
The behavior of S. platensis was investigated in this study through fed-batch pulse-feeding cultures performed at different carbon dioxide feeding rates (F = 0.44-1.03 g L-1 d(-1)) and photosynthetic photon flux density (PPFD = 80-250 mu mol photons m(-2) s(-1)) in a bench-scale helical photobioreactor. To achieve this purpose, an inorganic medium lacking the carbon source was enriched by gaseous carbon dioxide from a cylinder. The maximum cell concentration achieved was 12.8 g L-1 at PPFD = 166 mu mol photons m(-2) s(-1) and F= 0.44 g L-1 d(-1) of CO2. At PPFD = 80 and 125 mu mol photons m(-2) s(-1), the carbon utilization efficiency (CUE) reached maximum values of 50 and 69%, respectively, after about 20 days, and then it decreased, thus highlighting a photolimitation effect. At PPFD = 166 mu mol photons m(-2) s(-1), CUE was >= 90% between 20 and 50 days. The photosynthetic efficiency reached its maximum value (9.4%) at PPFD = 125 mu mol photons m(-2) s(-1). The photoinhibition threshold appeared to strongly depend on the feeding rate: at high PPFD, an increase in the amount of fed CO2 delayed the inhibitory effect on biomass growth, whereas at low PPFD, excess CO2 addition caused the microalga to stop growing. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The photochemical behavior of [Ru(NO)(NO)(2)pc] (pc = phthalocyanine) is reported in this paper. In addition to ligand localized absorption bands (lambda < 300 nm), the electronic spectrum of this complex in dichloromethane solution was dominated by an intense absorption at 640 nm characterized as Q-bands. Irradiation of [Ru(NO)(NO)(2)pc] at 366 and 660 nm led to the production of nitric oxide (NO) as detected by a NO-sensor. NO production by light irradiation at high energy involved excitation of d(pi)-pi* transition, while a photoinduced electron transfer occurred at long wavelength irradiation. The NO quantum yields varied from 1.4 x 10(-3) to 2.3 x 10(-2) mol einstein(-1), depending on oxygen concentration. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The prominent nitric oxide (NO) donor [Ru(terpy)(bdqi)NO](PF(6))(3) has been synthesized and evaluated with respect to noteworthy biological effects due to its NO photorelease, including vascular relaxation and melanoma cell culture toxicity. The potential for delivering NO in therapeutic quantities is tenable since the nitrosyl ruthenium complex (NRC) must first reach the ""target tissue"" and then release the NO upon stimulus. In this context. NRC-loaded lipid carriers were developed and characterized to further explore its topical administration for applications such as skin cancer treatment. NRC-loaded solid lipid nanoparticles (SLN) and nanostructured lipid carriers were prepared via the microemulsification method, with average diameters of 275 +/- 15 nm and 211 +/- 31 nm and zeta potentials of -40.7 +/- 10.4 mV and -50.0 +/- 7.5 mV, respectively. In vitro kinetic studies of NRC release from nanoparticles showed sustained release of NRC from the lipid carriers and illustrated the influence of the release medium and the lyophilization process. Stability studies showed that NO is released from NRC as a function of temperature and time and due to skin contact. The encapsulation of NRC in SLN followed by its lyophilization, significantly improved the complex stability. Furthermore, of particular interest was the fact that in the NO photorelease study, the NO release from the NRC-loaded SLN was approximately twice that of just NRC in solution. NRC-loaded SLN performs well enough at releasing and protecting NO degradation in vitro that it is a promising carrier for topical delivery of NO. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work reports oil a novel nitrosyl-ruthenium complex hearing the azanaphthalene ligand quinazoline (qui) ill its coordination sphere. The product crystallizes with ail additional quinazoline molecule, yielding the compound cis-[Ru(bpy)(2)(qui)NO](PF(6))(3).(qui). This feature leads to all absorption band at lambda(max) = 430 nm in CH(3)CN and lambda(max) = 420 nm in phosphate buffer, which promotes the photorelease of nitric oxide under visible light irradiation (lambda > 400 nm), in 1 ethanol: 1 water (v/v) mixture or under physiological pH. Both the intensity and energy of this transition are dependent on solvent and solution pH, suggesting that the transition has a charge transfer nature, and that the association of the second quinazoline molecule with the complex is driven by weak interactions, possibly of the pi-stacking type. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Light conditions during mycelial growth are known to influence fungi in many ways. The effect of visible-light exposure during mycelial growth was investigated on conidial tolerance to UVB irradiation and wet heat of Metarhizium robertsii, an insect-pathogenic fungus. Two nutrient media and two light regimens were compared. Conidia were produced on (A) potato dextrose agar plus yeast extract medium (PDAY) (A1) under dark conditions or (A2) under continuous visible light (provided by two fluorescent lamps with intensity 5.4 W m-2). For comparison, the fungus was also produced on (B) minimal medium (MM) under continuous-dark incubation, which is known to produce conidia with increased tolerance to heat and UVB radiation. The UVB tolerances of conidia produced on PDAY under continuous visible light were twofold higher than conidia produced on PDAY medium under dark conditions, and this elevated UVB tolerance was similar to that of conidia produced on MM in the dark. The heat tolerance of conidia produced under continuous light was, however, similar to that of conidia produced on MM or PDAY in the dark. Conidial yield on PDAY medium was equivalent when the fungus was grown either under continuous-dark or under continuous-light conditions.
Resumo:
Rupture of a light cellophane diaphragm in an expansion tube has been studied by an optical method. The influence of the light diaphragm on test flow generation has long been recognised, however the diaphragm rupture mechanism is less well known. It has been previously postulated that the diaphragm ruptures around its periphery due to the dynamic pressure loading of the shock wave, with the diaphragm material at some stage being removed from the flow to allow the shock to accelerate to the measured speeds downstream. The images obtained in this series of experiments are the first to show the mechanism of diaphragm rupture and mass removal in an expansion tube. A light diaphragm was impulsively loaded via a shock wave and a series of images was recorded holographically throughout the rupture process, showing gradual destruction of the diaphragm. Features such as the diaphragm material, the interface between gases, and a reflected shock were clearly visualised. Both qualitative and quantitative aspects of the rupture dynamics were derived from the images and compared with existing one-dimensional theory.
Resumo:
It has been suggested that phased atomic decay in a squeezed vacuum could be detected in the fluorescence spectrum emitted from a driven two-level atom in a cavity. Recently, the existence of other very distinctive features in the fluorescence spectra arising from the nonclassical features of the squeezed vacuum has been reported. In this paper, we investigate the possibility of experimental observation of these spectra. The main obstacle to the experimentalist is ensuring an effective squeezed-vacuum-atom coupling. To overcome this problem we propose the use of a Fabry-Perot microcavity. The analysis involves a consideration of the three-dimensional nature of the electromagnetic held, and the possibility of a mismatch between the squeezed and cavity modes. The problem of squeezing bandwidths is also addressed. We show that under experimentally realistic circumstances many of the spectral anomalies predicted in free space also occur in this environment. In addition, we report large population inversions in the dressed states of the two-level atom. [S1050-2947(98)02301-4].
Resumo:
Squeezed light is of interest as an example of a non-classical state of the electromagnetic field and because of its applications both in technology and in fundamental quantum physics. This review concentrates on one aspect of squeezed light, namely its application in atomic spectroscopy. The general properties, detection and application of squeezed light are first reviewed. The basic features of the main theoretical methods (master equations, quantum Langevin equations, coupled systems) used to treat squeezed light spectroscopy are then outlined. The physics of squeezed light interactions with atomic systems is dealt with first for the simpler case of two-level atoms and then for the more complex situation of multi-level atoms and multi-atom systems. Finally the specific applications of squeezed light spectroscopy are reviewed.
Resumo:
Leaves of the subtropical understorey shrub Schefflera arboricola Hayata growing in full sunlight had higher specific leaf weight, higher chlorophyll a/b ratios, lower total chlorophyll content and a threefold higher xanthophyll cycle pigment content than leaves growing in a naturally shaded, but sunfleck-punctuated, environment. A number of measurements, all made in situ and during natural day/night cycles, were taken as follows: current photochemical capacity (F-v/F-m after 10 min dark-adaptation), size and epoxidation state of the xanthophyll cycle, CO2 gas exchange and determination of the D1 synthesis rate. In sun leaves the lowest daily F-v/F-m was found to be approximately 0.6, the change from maximum correlating with an increase in zeaxanthin. Daily changes in zeaxanthin were partly due to de novo synthesis and turnover. We suggest that sun leaves can dissipate most of the excess light energy absorbed safely via the photoprotective xanthophyll cycle. D1 synthesis rates did not correlate with photosynthetic photon flux density or F-v/F-m. The shade leaves had high F-v/F-m values and constant photosynthetic rates throughout the day except during sunflecks, when photosynthetic rates increased and D1 synthesis accelerated, all without a substantial decrease in F-v/F-m. It seems that leaves of S. arboricola adapted to natural shade conditions can use sunflecks to contribute significantly to their productivity. The third leaf type investigated was from greenhouse-grown plants of S. arboricola after exposure to full sunlight. These leaves showed a rapid and large reduction in F-v/F-m (to 0.3), which neither correlated with zeaxanthin formation nor recovered within the same day. From long-term effects following full sunlight exposure of greenhouse-grown plants we suggest that this F-v/F-m reduction actually reflects photodestruction.
Resumo:
Relative eye size, gross brain morphology and central localization of 2-[I-125]iodomelatonin binding sites and melatonin receptor gene expression were compared in six gadiform fish living at different depths in the north-east Atlantic Ocean: Phycis blennoides (capture depth range 265-1260 m), Nezumia aequalis (445-1512 m), Coryphaenoides rupestris (706-1932 m), Trachyrincus murrayi (1010-1884 m), Coryphaenoides guentheri (1030 m) and Coryphaenoides (Nematonurus) armatus (2172-4787 m). Amongst these, the eye size range was 0.15-0.35 of head length with a value of 0.19 for C.(N.) armatus, the deepest species. Brain morphology reflected behavioural differences with well-developed olfactory regions in P.blennoides, T.murrayi and C. (N.) armatus and evidence of olfactory deficit in N. aequalis, C. rupestris and C. guentheri. All species had a clearly defined optic tectum with 2-[I-125] iodomelatonin binding and melatonin receptor gene expression localized to specific brain regions in a similar pattern to that found in shallow-water fish. Melatonin receptors were found throughout the visual structures of the brains of all species. Despite living beyond the depth of penetration of solar light these fish have retained central features associated with the coupling of cycles of growth, behaviour and reproduction to the diel light-dark cycle. How this functions in the deep sea remains enigmatic.
Resumo:
Regression analyses of a long series of light-trap catches at Narrabri, Australia, were used to describe the seasonal dynamics of Helicoverpa armigera (Hubner). The size of the second generation was significantly related to the size of the first generation, to winter rainfall, which had a positive effect, and to spring rainfall which had a negative effect. These variables accounted for up to 96% of the variation in size of the second generation from year to year. Rainfall and crop hosts were also important for the size of the third generation. The area and tonnage of many potential host crops were significantly correlated with winter rain. When winter rain was omitted from the analysis, the sizes of both the second and third generations could be expressed as a function of the size of the previous generation and of the areas planted to lucerne, sorghum and maize. Lucerne and maize always had positive coefficients and sorghum a negative one. We extended our analysis to catches of H. punctigera (Wallengren), which declines in abundance after the second generation. Winter rain had a positive effect on the sizes of the second and third generations, and rain in spring or early summer had a negative effect. Only the area grown to lucerne had a positive effect on abundance. Forecasts of pest levels from a few months to a few weeks in advance are discussed, along with the improved understanding of the seasonal dynamics of both species and the significance of crops in the management of insecticide resistance for H. armigera.
Resumo:
Many species of stomatopod crustaceans have multiple spectral classes of photoreceptors in their retinas. Behavioral evidence also indicates that stomatopods are capable of discriminating objects by their spectral differences alone, Most animals use only two to four different types of photoreceptors in their color vision systems, typically with broad sensitivity functions, but the stomatopods apparently include eight or more narrowband photoreceptor classes for color recognition. It is also known that stomatopods use several colored body regions in social interactions. To examine why stomatopods may be so 'concerned' with color, we measured the absorption spectra of visual pigments and intrarhabdomal filters, and the reflectance spectra from different parts of the bodies of several individuals of the gonodactyloid stomatopod species, Gonodactylus smithii. We then applied a model of multiple dichromatic channels for color encoding to examine whether the finely tuned color vision was specifically co-evolved with their complex color signals. Although the eye design of stomatopods seems suitable for detecting color signals of their own, the detection of color signals from other animals, such as reef fishes, can be enhanced as well. Color vision in G. smithii is therefore not exclusively adapted to detect its own color signals, but the spectral tuning of some photoreceptors (e.g. midband Rows 2 and 3) enhances the contrast of certain color signals to a large enough degree to make co-evolution between color vision and these rather specific color signals likely. Copyright (C) 2000 S. Karger AG, Basel.
Resumo:
This naphthalene diimide derivative, DC18, forms highly conjugated semiconducting stacked assemblies over electrodes after electrochemical conditioning. These molecular materials are very efficient towards electrochemical photoreduction of oxygen under visible light.
Resumo:
Light is generally regarded as the most likely cue used by zooplankton to regulate their vertical movements through the water column. However, the way in which light is used by zooplankton as a cue is not well understood. In this paper we present a mathematical model of diel vertical migration which produces vertical distributions of zooplankton that vary in space and time. The model is used to predict the patterns of vertical distribution which result when animals are assumed to adopt one of three commonly proposed mechanisms for vertical swimming. First, we assume zooplankton tend to swim towards a preferred intensity of light. We then assume zooplankton swim in response to either the rate of change in light intensity or the relative rate of change in light intensity. The model predicts that for all three mechanisms movement is fastest at sunset and sunrise and populations are primarily influenced by eddy diffusion at night in the absence of a light stimulus. Daytime patterns of vertical distribution differ between the three mechanisms and the reasons for the predicted differences are discussed. Swimming responses to properties of the light field are shown to be adequate for describing diel vertical migration where animals congregate in near surface waters during the evening and reside at deeper depths during the day. However, the model is unable to explain how some populations halt their ascent before reaching surface waters or how populations re-congregate in surface waters a few hours before sunrise, a phenomenon which is sometimes observed in the held. The model results indicate that other exogenous or endogenous factors besides light may play important roles in regulating vertical movement.