918 resultados para Life-cycle assessment (LCA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rise of the twenty-first century has seen the further increase in the industrialization of Earth’s resources, as society aims to meet the needs of a growing population while still protecting our environmental and natural resources. The advent of the industrial bioeconomy – which encompasses the production of renewable biological resources and their conversion into food, feed, and bio-based products – is seen as an important step in transition towards sustainable development and away from fossil fuels. One sector of the industrial bioeconomy which is rapidly being expanded is the use of biobased feedstocks in electricity production as an alternative to coal, especially in the European Union.

As bioeconomy policies and objectives increasingly appear on political agendas, there is a growing need to quantify the impacts of transitioning from fossil fuel-based feedstocks to renewable biological feedstocks. Specifically, there is a growing need to conduct a systems analysis and potential risks of increasing the industrial bioeconomy, given that the flows within it are inextricably linked. Furthermore, greater analysis is needed into the consequences of shifting from fossil fuels to renewable feedstocks, in part through the use of life cycle assessment modeling to analyze impacts along the entire value chain.

To assess the emerging nature of the industrial bioeconomy, three objectives are addressed: (1) quantify the global industrial bioeconomy, linking the use of primary resources with the ultimate end product; (2) quantify the impacts of the expaning wood pellet energy export market of the Southeastern United States; (3) conduct a comparative life cycle assessment, incorporating the use of dynamic life cycle assessment, of replacing coal-fired electricity generation in the United Kingdom with wood pellets that are produced in the Southeastern United States.

To quantify the emergent industrial bioeconomy, an empirical analysis was undertaken. Existing databases from multiple domestic and international agencies was aggregated and analyzed in Microsoft Excel to produce a harmonized dataset of the bioeconomy. First-person interviews, existing academic literature, and industry reports were then utilized to delineate the various intermediate and end use flows within the bioeconomy. The results indicate that within a decade, the industrial use of agriculture has risen ten percent, given increases in the production of bioenergy and bioproducts. The underlying resources supporting the emergent bioeconomy (i.e., land, water, and fertilizer use) were also quantified and included in the database.

Following the quantification of the existing bioeconomy, an in-depth analysis of the bioenergy sector was conducted. Specifically, the focus was on quantifying the impacts of the emergent wood pellet export sector that has rapidly developed in recent years in the Southeastern United States. A cradle-to-gate life cycle assessment was conducted in order to quantify supply chain impacts from two wood pellet production scenarios: roundwood and sawmill residues. For reach of the nine impact categories assessed, wood pellet production from sawmill residues resulted in higher values, ranging from 10-31% higher.

The analysis of the wood pellet sector was then expanded to include the full life cycle (i.e., cradle-to-grave). In doing to, the combustion of biogenic carbon and the subsequent timing of emissions were assessed by incorporating dynamic life cycle assessment modeling. Assuming immediate carbon neutrality of the biomass, the results indicated an 86% reduction in global warming potential when utilizing wood pellets as compared to coal for electricity production in the United Kingdom. When incorporating the timing of emissions, wood pellets equated to a 75% or 96% reduction in carbon dioxide emissions, depending upon whether the forestry feedstock was considered to be harvested or planted in year one, respectively.

Finally, a policy analysis of renewable energy in the United States was conducted. Existing coal-fired power plants in the Southeastern United States were assessed in terms of incorporating the co-firing of wood pellets. Co-firing wood pellets with coal in existing Southeastern United States power stations would result in a nine percent reduction in global warming potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microalgae are an attractive way to produce biofuels due to the ability to accumulate lipids and very high photosynthetic yields. This article presents a review of life-cycle assessment studies of microalgae biodiesel production, including an analysis of modeling choices and assumptions. A high variation in GHG emissions (between -0.75 and 2.9 kg CO2eq MJ-1) was found and the main causes were investigated, namely modeling choices (e.g. the approach used to deal with multifunctionality), and a high parameter uncertainty in microalgae cultivation, harvesting and oil extraction processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work evaluates the environmental performance of using pulp and paper sludge as feedstock for the production of second generation ethanol. An ethanol plant for converting 5400 tons of dry sludge/year was modelled and evaluated using a cradle-to-gate life cycle assessment approach. The sludge is a burden for pulp and paper mills that is mainly disposed in landfilling. The studied system allows for the valorisation of the waste, which due to its high polysaccharide content is a valuable feedstock for bioethanol production. Eleven impact categories were analysed and the results showed that enzymatic hydrolysis and neutralisation of the CaCO3 are the environmental hotspots of the system contributing up to 85% to the overall impacts. Two optimisation scenarios were evaluated: (1) using a reduced HCl amount in the neutralisation stage and (2) co-fermentation of xylose and glucose, for maximal ethanol yield. Both scenarios displayed significant environmental impact improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The residual forest biomass (RFB) sector has been experiencing strong development at European level and particularly in Portugal mainly due to the increase of energy production from renewable sources. The aim of this study is to assess the environmental impacts of eucalyptus RFB chips production chain in Portugal. The environmental and economic impact comparison of the processes included in the production chain is presented as well. The environmental impacts were calculated by the life cycle assessment approach described in the ISO 14040 series of standards. The production chain assessed included all processes from eucalyptus forest until the delivery of RFB chips at the power plant. The main conclusion of this study is that eucalyptus wood production is the process that presents the greatest environmental impact through the product life cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road infrastructure has been considered as one of the most expensive and extensive infrastructure assets of the built environment globally. This asset also impacts the natural environment significantly during different phases of life e.g. construction, use, maintenance and end-of-life. The growing emphasis for sustainable development to meet the needs of future generations requires mitigation of the environmental impacts of road infrastructure during all phases of life e.g. construction, operation and end-of-life disposal (as required). Life-cycle analysis (LCA), a method of quantification of all stages of life, has recently been studied to explore all the environmental components of road projects due to limitations of generic environmental assessments. The LCA ensures collection and assessment of the inputs and outputs relating to any potential environmental factor of any system throughout its life. However, absence of a defined system boundary covering all potential environmental components restricts the findings of the current LCA studies. A review of the relevant published LCA studies has identified that environmental components such as rolling resistance of pavement, effect of solar radiation on pavement(albedo), traffic congestion during construction, and roadway lighting & signals are not considered by most of the studies. These components have potentially higher weightings for environment damage than several commonly considered components such as materials, transportation and equipment. This paper presents the findings of literature review, and suggests a system boundary model for LCA study of road infrastructure projects covering potential environmental components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recycled materials replacing part of virgin materials in highway applications has shown great benefits to the society and environment. Beneficial use of recycled materials can save landfill places, sparse natural resources, and energy consumed in milling and hauling virgin materials. Low price of recycled materials is favorable to cost-saving in pavement projects. Considering the availability of recycled materials in the State of Maryland (MD), four abundant recycled materials, recycled concrete aggregate (RCA), recycled asphalt pavement (RAP), foundry sand (FS), and dredged materials (DM), were studied. A survey was conducted to collect the information of current usage of the four recycled materials in States’ Department of Transportation (DOTs). Based on literature review, mechanical and environmental properties, recommendations, and suggested test standards were investigated separately for the four recycled materials in different applications. Constrains in using these materials were further studied in order to provide recommendations for the development of related MD specifications. To measure social and environmental benefits from using recycled materials, life-cycle assessment was carried out with life-cycle analysis (LCA) program, PaLATE, and green highway rating system, BEST-in-Highway. The survey results indicated the wide use of RAP and RCA in hot mix asphalt (HMA) and graded aggregate base (GAB) respectively, while FS and DM are less used in field. Environmental concerns are less, but the possibly low quality and some adverse mechanical characteristics may hinder the widely use of these recycled materials. Technical documents and current specifications provided by State DOTs are good references to the usage of these materials in MD. Literature review showed consistent results with the survey. Studies from experimental research or site tests showed satisfactory performance of these materials in highway applications, when the substitution rate, gradation, temperature, moisture, or usage of additives, etc. meet some requirements. The results from LCA revealed significant cost savings in using recycled materials. Energy and water consumption, gas emission, and hazardous waste generation generally showed reductions to some degree. Use of new recycled technologies will contribute to more sustainable highways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper uses the lens of life-cycle thinking to discuss recent developments in the Australian mass market fashion industry, and to explore the opportunities and barriers to implementing lifecycle thinking within mass market design processes. Life-cycle analysis is a quantitative tool used to assess the environmental impact of a material or product. However the underlying thinking of life-cycle analysis can also be employed more generally, enabling a designer to assess their processes and design decisions for sustainability. A fashion designer employing life cycle thinking would consider every stage in the life of a garment from fibre and textiles through to consumer use, to eventual disposal and beyond disposal to reuse and later disassembly for fibre recycling. Although life-cycle thinking is rarely considered in the design processes of the fast-paced, price-driven mass market, this paper explores its potential and suggests ways in which it could be implemented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global climate change is one of the most significant environmental impacts at the moment. One central issue for the building and construction industry to address global climate change is the development of credible carbon labelling schemes for building materials. Various carbon labelling schemes have been developed for concrete due to its high contribution to global greenhouse gas (GHG) emissions. However, as most carbon labelling schemes adopt cradle-to-gate as system boundary, the credibility of the eco-label information may not be satisfactory because recent studies show that the use and end-of-life phases can have a significant impact on the life cycle GHG emissions of concrete in terms of carbonation, maintenance and rehabilitation, other indirect emissions, and recycling activities. A comprehensive review on the life cycle assessment of concrete is presented to holistically examine the importance of use and end-of-life phases to the life cycle GHG quantification of concrete. The recent published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication also mandates the use of cradle-to-grave to provide publicly available eco-label information when the use and end-of-life phases of concrete can be appropriately simulated. With the support of Building Information Modelling (BIM) and other simulation technologies, the contribution of use and end-of-life phases to the life cycle GHG emissions of concrete should not be overlooked in future studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction industry is one of the largest sources of carbon emissions. Manufacturing of raw materials, such as cement, steel and aluminium, is energy intensive and has considerable impact on carbon emissions level. Due to the rising recognition of global climate change, the industry is under pressure to reduce carbon emissions. Carbon labelling schemes are therefore developed as meaningful yardsticks to measure and compare carbon emissions. Carbon labelling schemes can help switch consumer-purchasing habits to low-carbon alternatives. However, such switch is dependent on a transparent scheme. The principle of transparency is highlighted in all international greenhouse gas (GHG) standards, including the newly published ISO 14067: Carbon footprint of products – requirements and guidelines for quantification and communication. However, there are few studies which systematically investigate the transparency requirements in carbon labelling schemes. A comparison of five established carbon labelling schemes, namely the Singapore Green Labelling Scheme, the CarbonFree (the U.S.), the CO2 Measured Label and the Reducing CO2 Label (UK), the CarbonCounted (Canada), and the Hong Kong Carbon Labelling Scheme is therefore conducted to identify and investigate the transparency requirements. The results suggest that the design of current carbon labels have transparency issues relating but not limited to the use of a single sign to represent the comprehensiveness of the carbon footprint. These transparency issues are partially caused by the flexibility given to select system boundary in the life cycle assessment (LCA) methodology to measure GHG emissions. The primary contribution of this study to the construction industry is to reveal the transparency requirements from international GHG standards and carbon labels for construction products. The findings also offer five key strategies as practical implications for the global community to improve the performance of current carbon labelling schemes on transparency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an input-output analysis of the life-cycle labor, land, and greenhouse gas (GHG) requirements of alternative options for three case studies: investing money in a new vehicle versus in repairs of an existing vehicle (labor), passenger transport modes for a trip between Sydney and Melbourne (land use), and renewable electricity generation (GHG emissions). These case studies were chosen to demonstrate the possibility of rank crossovers in life-cycle inventory (LCI) results as system boundaries are expanded and upstream production inputs are taken into account. They demonstrate that differential convergence can cause crossovers in the ranking of inventories for alternative functional units occurring at second-and higher-order upstream production layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental decision making during the building design process has typically focused on improvements to operational efficiencies. Improvements to thermal performance and efficiency of appliances and systems within buildings both aim to reduce resource consumption and environmental impacts associated with the operation of buildings. Significant reductions in building energy and water consumption are possible; however often the impacts occurring across the other stages of a building‘s life are not considered or are seen as insignificant in comparison.

Previous research shows that embodied impacts (raw material extraction, processing, manufacture, transportation and construction) can be as significant as those related to building operation. There is, however, limited consistent and comprehensive information available for building designers to make informed decisions in this area. Often the information that is available is from disparate sources, which makes comparison of alternative solutions unreliable and risky. lt is also important that decisions are made from a life cycle perspective, ensuring that strategies to reduce environmental impacts from one life cycle stage do not come at the expense of an increase in overall life cycle impacts

A consistent and comprehensive framework for assessing and specifying building assemblies for enhanced environmental outcomes does not currently exist. This paper presents the initial findings of a project that aims to establish a database of the life cycle energy requirements of a broad range of construction assemblies, based on a comprehensive assessment framework. Life cycle energy requirements have been calculated for eight standard residential construction assemblies integrating an innovative embodied energy assessment technique with thermal performance simulation modelling and ranked according to their performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building environmental design typically focuses on improvements to operational efficiencies such as building thermal performance and system efficiency. Often the impacts occurring across the other stages of a building's life are not considered or are seen as insignificant in comparison. However, previous research shows that embodied impacts can be just as important. There is limited consistent and comprehensive information available for building designers to make informed decisions in this area. Often the information that is available is from disparate sources, which makes comparison of alternative solutions unreliable. It is also important to ensure that strategies to reduce environmental impacts from one life cycle stage do not come at the expense of an increase in overall life-cycle impacts. A consistent and comprehensive framework for assessing and specifying building assemblies for enhanced environmental outcomes does not currently exist. This article presents the initial findings of a project that aims to establish a database of life cycle energy requirements for a broad range of construction assemblies, based on a comprehensive assessment framework. Life cycle energy requirements have been calculated for eight residential construction assemblies integrating an innovative embodied energy assessment technique with thermal performance modelling and ranked according to their performance. © #2010 Earthscan ISSN: 0003-8628.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Replacing glass fibers with natural fibers in the automobile industry can yield economic, environmental and social benefits. This article evaluates the prospective environmental impacts of automobile applications of curauá fiber (Ananas erectifolius), which nearly equates the physical properties of glass fibers. The study identified economic and social advantages of applying curauá fiber composites in car parts. Besides costing 50% less than fiber glass, the use of curauá fibers can promote regional development in the Amazon region. In order to realize significant environmental benefits, however, the curauá-based composites would have to be lighter than their glass fiber-based counterparts. © 2006 Elsevier Ltd. All rights reserved.