882 resultados para Life Cycle Analysis (LCA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Federal Railroad Administration, Office of Safety, Washington, D.C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy price is related to more than half of the total life cycle cost of asphalt pavements. Furthermore, the fluctuation related to price of energy has been much higher than the general inflation and interest rate. This makes the energy price inflation an important variable that should be addressed when performing life cycle cost (LCC) studies re- garding asphalt pavements. The present value of future costs is highly sensitive to the selected discount rate. Therefore, the choice of the discount rate is the most critical element in LCC analysis during the life time of a project. The objective of the paper is to present a discount rate for asphalt pavement projects as a function of interest rate, general inflation and energy price inflation. The discount rate is defined based on the portion of the energy related costs during the life time of the pavement. Consequently, it can reflect the financial risks related to the energy price in asphalt pavement projects. It is suggested that a discount rate sensitivity analysis for asphalt pavements in Sweden should range between –20 and 30%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power distribution systems are susceptible to extreme damage from natural hazards especially hurricanes. Hurricane winds can knock down distribution poles thereby causing damage to the system and power outages which can result in millions of dollars in lost revenue and restoration costs. Timber has been the dominant material used to support overhead lines in distribution systems. Recently however, utility companies have been searching for a cost-effective alternative to timber poles due to environmental concerns, durability, high cost of maintenance and need for improved aesthetics. Steel has emerged as a viable alternative to timber due to its advantages such as relatively lower maintenance cost, light weight, consistent performance, and invulnerability to wood-pecker attacks. Both timber and steel poles are prone to deterioration over time due to decay in the timber and corrosion of the steel. This research proposes a framework for conducting fragility analysis of timber and steel poles subjected to hurricane winds considering deterioration of the poles over time. Monte Carlo simulation was used to develop the fragility curves considering uncertainties in strength, geometry and wind loads. A framework for life-cycle cost analysis is also proposed to compare the steel and timber poles. The results show that steel poles can have superior reliability and lower life-cycle cost compared to timber poles, which makes them suitable substitutes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Until now health impact assessment and environmental impact assessment are two different issues, often not addressed together. Both issues have to be dealt with for sustainable building. The aim of this paper is to link healthy and sustainable housing in life cycle assessment. Two strategies are studied: clean air as a functional unity and health as a quality indicator. The strategies are illustrated with an example on the basis of Eco-Quantum, which is a Dutch whole-building assessment tool. It turns out that both strategies do not conflict with the LCA methodology. The LCA methodology has to be refined for this purpose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This final report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experience plays an important role in building management. “How often will this asset need repair?” or “How much time is this repair going to take?” are types of questions that project and facility managers face daily in planning activities. Failure or success in developing good schedules, budgets and other project management tasks depend on the project manager's ability to obtain reliable information to be able to answer these types of questions. Young practitioners tend to rely on information that is based on regional averages and provided by publishing companies. This is in contrast to experienced project managers who tend to rely heavily on personal experience. Another aspect of building management is that many practitioners are seeking to improve available scheduling algorithms, estimating spreadsheets and other project management tools. Such “micro-scale” levels of research are important in providing the required tools for the project manager's tasks. However, even with such tools, low quality input information will produce inaccurate schedules and budgets as output. Thus, it is also important to have a broad approach to research at a more “macro-scale.” Recent trends show that the Architectural, Engineering, Construction (AEC) industry is experiencing explosive growth in its capabilities to generate and collect data. There is a great deal of valuable knowledge that can be obtained from the appropriate use of this data and therefore the need has arisen to analyse this increasing amount of available data. Data Mining can be applied as a powerful tool to extract relevant and useful information from this sea of data. Knowledge Discovery in Databases (KDD) and Data Mining (DM) are tools that allow identification of valid, useful, and previously unknown patterns so large amounts of project data may be analysed. These technologies combine techniques from machine learning, artificial intelligence, pattern recognition, statistics, databases, and visualization to automatically extract concepts, interrelationships, and patterns of interest from large databases. The project involves the development of a prototype tool to support facility managers, building owners and designers. This Industry focused report presents the AIMMTM prototype system and documents how and what data mining techniques can be applied, the results of their application and the benefits gained from the system. The AIMMTM system is capable of searching for useful patterns of knowledge and correlations within the existing building maintenance data to support decision making about future maintenance operations. The application of the AIMMTM prototype system on building models and their maintenance data (supplied by industry partners) utilises various data mining algorithms and the maintenance data is analysed using interactive visual tools. The application of the AIMMTM prototype system to help in improving maintenance management and building life cycle includes: (i) data preparation and cleaning, (ii) integrating meaningful domain attributes, (iii) performing extensive data mining experiments in which visual analysis (using stacked histograms), classification and clustering techniques, associative rule mining algorithm such as “Apriori” and (iv) filtering and refining data mining results, including the potential implications of these results for improving maintenance management. Maintenance data of a variety of asset types were selected for demonstration with the aim of discovering meaningful patterns to assist facility managers in strategic planning and provide a knowledge base to help shape future requirements and design briefing. Utilising the prototype system developed here, positive and interesting results regarding patterns and structures of data have been obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n design of bridge structures, it is common to adopt a 100 year design life. However, analysis of a number of case study bridges in Australia has indicated that the actual design life can be significantly reduced due to premature deterioration resulting from exposure to aggressive environments. A closer analysis of the cost of rehabilitation of these structures has raised some interesting questions. What would be the real service life of a bridge exposed to certain aggressive environments? What is the strategy of conducting bridge rehabilitation? And what are the life cycle costs associated with rehabilitation? A research project funded by the CRC for Construction Innovation in Australia is aimed at addressing these issues. This paper presents a concept map for assisting decision makers to appropriately choose the best treatment for bridge rehabilitation affected by premature deterioration through exposure to aggressive environments in Australia. The decision analysis is referred to a whole of life cycle cost analysis by considering appropriate elements of bridge rehabilitation costs. In addition, the results of bridges inspections in Queensland are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public awareness and the nature of highway construction works demand that sustainability measures are first on the development agenda. However, in the current economic climate, individual volition and enthusiasm for such high capital investments do not present as strong cases for decision making as the financial pictures of pursuing sustainability. Some stakeholders consider sustainability to be extra work that costs additional money. Though, stakeholders realised its importance in infrastructure development. They are keen to identify the available alternatives and financial implications on a lifecycle basis. Highway infrastructure development is a complex rocess which requires expertise and tools to evaluate investment options, such as environmentally sustainable features for road and highway development. Life-cycle cost analysis (LCCA) is a valuable approach for investment decision making for construction works. However, LCCA applications in highway development are still limited. Current models, for example focus on economic issues alone and do not deal with sustainability factors, which are more difficult to quantify and encapsulate in estimation modules. This paper reports the research which identifies sustainability related factors in highway construction projects, in quantitative and qualitative forms of a multi-criteria analysis. These factors are then incorporated into past and proven LCCA models to produce a new long term decision support model. The research via questionnaire, model building, analytical hierarchy processes (AHP) and case studies have identified, evaluated and then processed highway sustainability related cost elements. These cost elements need to be verified by industry before being integrated for further development of the model. Then the Australian construction industry will have a practical tool to evaluate investment decisions which provide an optimum balance between financial viability and sustainability deliverables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life-cycle management (LCM) has been employed in the management of construction projects for many years in order to reduce whole life cost, time, risk and improve the service to owners. However, owing to lack of an effective information sharing platform, the current LCM of construction projects is not effectively used in the construction industry. Based upon the analysis of the information flow of LCM, a virutal prototyping (VP)-based communication and collaboration information platform is proposed. Following this, the platform is customized using DASSAULT sofware. The whole process of implementing the VP-based LCM are also discussed and, from a simple case study, it is demonstrated that the VP-based communication and collaboration information platform is an effective tool to support the LCM of construction projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Life Cycle Cost Analysis provides a form of synopsis of the initial and consequential costs of building related decisions. These cost figures may be implemented to justify higher investments, for example, in the quality or flexibility of building solutions through a long term cost reduction. The emerging discipline of asset mnagement is a promising approach to this problem, because it can do things that techniques such as balanced scorecards and total quantity cannot. Decisions must be made about operating and maintaining infrastructure assets. An injudicious sensitivity of life cycle costing is that the longer something lasts, the less it costs over time. A life cycle cost analysis will be used as an economic evaluation tool and collaborate with various numbers of analyses. LCCA quantifies incurring costs commonly overlooked (by property and asset managers and designs) as replacement and maintenance costs. The purpose of this research is to examine the Life Cycle Cost Analysis on building floor materials. By implementing the life cycle cost analysis, the true cost of each material will be computed projecting 60 years as the building service life and 5.4% as the inflation rate percentage to classify and appreciate the different among the materials. The analysis results showed the high impact in selecting the floor materials according to the potential of service life cycle cost next.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing practical rules for controlling invasive species is a challenging task for managers, particularly when species are long-lived, have complex life cycles and high dispersal capacities. Previous findings derived from plant matrix population analyses suggest that effective control of long-lived invaders may be achieved by focusing on killing adult plants. However, the cost-effectiveness of managing different life stages has not been evaluated. We illustrate the benefits of integrating matrix population models with decision theory to undertake this evaluation, using empirical data from the largest infestation of mesquite (Leguminosae: Prosopis spp) within Australia. We include in our model the mesquite life cycle, different dispersal rates and control actions that target individuals at different life stages with varying costs, depending on the intensity of control effort. We then use stochastic dynamic programming to derive cost-effective control strategies that minimize the cost of controlling the core infestation locally below a density threshold and the future cost of control arising from infestation of adjacent areas via seed dispersal. Through sensitivity analysis, we show that four robust management rules guide the allocation of resources between mesquite life stages for this infestation: (i) When there is no seed dispersal, no action is required until density of adults exceeds the control threshold and then only control of adults is needed; (ii) when there is seed dispersal, control strategy is dependent on knowledge of the density of adults and large juveniles (LJ) and broad categories of dispersal rates only; (iii) if density of adults is higher than density of LJ, controlling adults is most cost-effective; (iv) alternatively, if density of LJ is equal or higher than density of adults, management efforts should be spread between adults, large and to a lesser extent small juveniles, but never saplings. Synthesis and applications.In this study, we show that simple rules can be found for managing invasive plants with complex life cycles and high dispersal rates when population models are combined with decision theory. In the case of our mesquite population, focussing effort on controlling adults is not always the most cost-effective way to meet our management objective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chinese rare minnow (Gobiocypris rarus), a freshwater teleost,. was exposed to diethylstilbestrol (DES) at 0.05, 0.5, 1 and 5 mug/L from fertilized eggs for up to mature period under flow-through condition. Several endpoints that related to development, reproductive fitness and transgenerational effects were evaluated. It was found that body length and body weight were significantly reduced and vitellogenin (Via) levels were significantly increased for fish exposed to DES. Histological examination showed that the sex ratios of F-0 fish skewed to female and about 2% of the fish exposed to 0.05 mug/L DES developed testes-ova. The reproductive success, as determined from data on egg production, was reduced in female fish exposed to 0.05, 0.5, 1 and 5 mug/L DES. The lowest-observed-effect concentrations (LOEC) for chances of sex ratios, reproductive success and histology alteration of F-0 are 0.05 mug/L. In the offspring, transgenerational effects on egg hatching rate. egg fertilization and Vtg levels of juvenile individuals were not observed. However. survival of F, generation fry significantly declined. The analysis of sex steroid levels revealed a significant decrease of testosterone (T) in the whole body homogenates (WBH) of male progeny and somewhat elevation of estradiol (E-T) in the WBH of female offspring. These findings indicate that exposure to DES causes a variety of developmental, reproductive and transgenerational effects. (C) 2004 Elsevier B.V. All rights reserved.