990 resultados para Liberalized electricity market
Resumo:
This article reports the results of an experiment that examined how demand aggregators can discipline vertically-integrated firms - generator and distributor-retailer holdings-, which have a high share in wholesale electricity market with uniform price double auction (UPDA). We initially develop a treatment where holding members redistribute the profit based on the imposition of supra-competitive prices, in equal proportions (50%-50%). Subsequently, we introduce a vertical disintegration (unbundling) treatment with holding-s information sharing, where profits are distributed according to market outcomes. Finally, a third treatment is performed to introduce two active demand aggregators, with flexible interruptible loads in real time. We found that the introduction of responsive demand aggregators neutralizes the power market and increases market efficiency, even beyond what is achieved through vertical disintegration.
Resumo:
Sweden, together with Norway, Finland and Denmark, have created a multi-national electricity market called NordPool. In this market, producers and retailers of electricity can buy and sell electricity, and the retailers then offers this electricity to end consumers such as households and industries. Previous studies have shown that pricing at the NordPool market is functioning quite well, but no other study has to my knowledge studied if pricing in the retail market to consumers in Sweden is well functioning. If the market is well functioning, with competition and low transaction costs when changing electricity retailer, we would expect that a homogeneous good such as electricity would be sold at the approximately same price, and that price changes would be highly correlated, in this market. Thus, the aim of this study is to test whether the price of Vattenfall, the largest energy firm in the Swedish market, is highly correlated to the price of other firms in the Swedish retail market for electricity. Descriptive statistics indicate that the price offered by Vattenfall is quite similar to the price of other firms in the market. In addition, regression analysis show that the correlation between the price of Vattenfall and other firms is as high as 0.98.
Resumo:
This paper discusses two key aspects regarding the efficiency of the Argentinean Electricity Market. Using hourly data on prices, marginal costs, and operational status of generators, it will be argued that, unlike the former British and Californian electricity spot markets, this market is not subject to the conventional forms of exercise of market power by generators. We then use Chao's (1983) model of optimal configuation of electricity supply to evaluate the social desirability of the change in the supply pattern of the Argentinean electricity industry, which took place throughout the last ten years.
Resumo:
An assessment of the hedging performance in the Iberian Forward Electricity Market is performed. Aggregated data from the Portuguese and Spanish clearing houses for energy derivatives are considered. The hedging performance is measured through the ratio of the final open interest of a month derivatives contract divided by its accumulated cleared volume. The base load futures in the Iberian energy derivatives exchange show the lowest ratios due to good liquidity. The peak futures show bigger ratios as their reduced liquidity is produced by auctions fixed by Portuguese regulation. The base load swaps settled in the clearing house located in Spain show initially large values due to low registered volumes, as this clearing house is mainly used for short maturity (daily and weekly swaps). This hedging ratio can be a powerful oversight tool for energy regulators when accessing to all the derivatives transactions as envisaged by European regulation.
Resumo:
The most straightforward European single energy market design would entail a European system operator regulated by a single European regulator. This would ensure the predictable development of rules for the entire EU, significantly reducing regulatory uncertainty for electricity sector investments. But such a first-best market design is unlikely to be politically realistic in the European context for three reasons. First, the necessary changes compared to the current situation are substantial and would produce significant redistributive effects. Second, a European solution would deprive member states of the ability to manage their energy systems nationally. And third, a single European solution might fall short of being well-tailored to consumers’ preferences, which differ substantially across the EU. To nevertheless reap significant benefits from an integrated European electricity market, we propose the following blueprint: First, we suggest adding a European system-management layer to complement national operation centres and help them to better exchange information about the status of the system, expected changes and planned modifications. The ultimate aim should be to transfer the day-to-day responsibility for the safe and economic operation of the system to the European control centre. To further increase efficiency, electricity prices should be allowed to differ between all network points between and within countries. This would enable throughput of electricity through national and international lines to be safely increased without any major investments in infrastructure. Second, to ensure the consistency of national network plans and to ensure that they contribute to providing the infrastructure for a functioning single market, the role of the European ten year network development plan (TYNDP) needs to be upgraded by obliging national regulators to only approve projects planned at European level unless they can prove that deviations are beneficial. This boosted role of the TYNDP would need to be underpinned by resolving the issues of conflicting interests and information asymmetry. Therefore, the network planning process should be opened to all affected stakeholders (generators, network owners and operators, consumers, residents and others) and enable the European Agency for the Cooperation of Energy Regulators (ACER) to act as a welfare-maximising referee. An ultimate political decision by the European Parliament on the entire plan will open a negotiation process around selecting alternatives and agreeing compensation. This ensures that all stakeholders have an interest in guaranteeing a certain degree of balance of interest in the earlier stages. In fact, transparent planning, early stakeholder involvement and democratic legitimisation are well suited for minimising as much as possible local opposition to new lines. Third, sharing the cost of network investments in Europe is a critical issue. One reason is that so far even the most sophisticated models have been unable to identify the individual long-term net benefit in an uncertain environment. A workable compromise to finance new network investments would consist of three components: (i) all easily attributable cost should be levied on the responsible party; (ii) all network users that sit at nodes that are expected to receive more imports through a line extension should be obliged to pay a share of the line extension cost through their network charges; (iii) the rest of the cost is socialised to all consumers. Such a cost-distribution scheme will involve some intra-European redistribution from the well-developed countries (infrastructure-wise) to those that are catching up. However, such a scheme would perform this redistribution in a much more efficient way than the Connecting Europe Facility’s ad-hoc disbursements to politically chosen projects, because it would provide the infrastructure that is really needed.
Resumo:
This CEPS Task Force Report focuses on whether there is a need to adapt the EU’s electricity market design and if so, the options for doing so. In a first step, it analyses the current market trends by distinguishing between their causes and their consequences. Then, the current blueprint of EU power market design – the target model – is briefly introduced, followed by a discussion of the shortcomings of the current approach and the challenges in finding suitable solutions. The final chapter offers an inventory of solutions differentiating between recommendations shared among Task Force members and non-consensual options.
Resumo:
Market-based transmission expansion planning gives information to investors on where is the most cost efficient place to invest and brings benefits to those who invest in this grid. However, both market issue and power system adequacy problems are system planers’ concern. In this paper, a hybrid probabilistic criterion of Expected Economical Loss (EEL) is proposed as an index to evaluate the systems’ overall expected economical losses during system operation in a competitive market. It stands on both investors’ and planner’s point of view and will further improves the traditional reliability cost. By applying EEL, it is possible for system planners to obtain a clear idea regarding the transmission network’s bottleneck and the amount of losses arises from this weak point. Sequentially, it enables planners to assess the worth of providing reliable services. Also, the EEL will contain valuable information for moneymen to undertake their investment. This index could truly reflect the random behaviors of power systems and uncertainties from electricity market. The performance of the EEL index is enhanced by applying Normalized Coefficient of Probability (NCP), so it can be utilized in large real power systems. A numerical example is carried out on IEEE Reliability Test System (RTS), which will show how the EEL can predict the current system bottleneck under future operational conditions and how to use EEL as one of planning objectives to determine future optimal plans. A well-known simulation method, Monte Carlo simulation, is employed to achieve the probabilistic characteristic of electricity market and Genetic Algorithms (GAs) is used as a multi-objective optimization tool.
Resumo:
There are many techniques for electricity market price forecasting. However, most of them are designed for expected price analysis rather than price spike forecasting. An effective method of predicting the occurrence of spikes has not yet been observed in the literature so far. In this paper, a data mining based approach is presented to give a reliable forecast of the occurrence of price spikes. Combined with the spike value prediction techniques developed by the same authors, the proposed approach aims at providing a comprehensive tool for price spike forecasting. In this paper, feature selection techniques are firstly described to identify the attributes relevant to the occurrence of spikes. A simple introduction to the classification techniques is given for completeness. Two algorithms: support vector machine and probability classifier are chosen to be the spike occurrence predictors and are discussed in details. Realistic market data are used to test the proposed model with promising results.
Resumo:
This paper describes a multi-agent based simulation (MABS) framework to construct an artificial electric power market populated with learning agents. The artificial market, named TEMMAS (The Electricity Market Multi-Agent Simulator), explores the integration of two design constructs: (i) the specification of the environmental physical market properties and (ii) the specification of the decision-making (deliberative) and reactive agents. TEMMAS is materialized in an experimental setup involving distinct power generator companies that operate in the market and search for the trading strategies that best exploit their generating units' resources. The experimental results show a coherent market behavior that emerges from the overall simulated environment.
Resumo:
Num mercado de electricidade competitivo onde existe um ambiente de incerteza, as empresas de geração adoptam estratégias que visam a maximização do lucro, e a minimização do risco. Neste contexto, é de extrema importância para desenvolver uma estratégia adequada de gestão de risco ter em conta as diferentes opções de negociação de energia num mercado liberalizado, de forma a suportar a tomada de decisões na gestão de risco. O presente trabalho apresenta um modelo que avalia a melhor estratégia de um produtor de energia eléctrica que comercializa num mercado competitivo, onde existem dois mercados possíveis para a transacção de energia: o mercado organizado (bolsa) e o mercado de contratos bilaterais. O produtor tenta maximizar seus lucros e minimizar os riscos correspondentes, seleccionando o melhor equilíbrio entre os dois mercados possíveis (bolsa e bilateral). O mercado de contratos bilaterais visa gerir adequadamente os riscos inerentes à operação de mercados no curto prazo (mercado organizado) e dar o vendedor / comprador uma capacidade real de escolher o fornecedor com que quer negociar. O modelo apresentado neste trabalho faz uma caracterização explícita do risco no que diz respeito ao agente de mercado na questão da sua atitude face ao risco, medido pelo Value at Risk (VaR), descrito neste trabalho por Lucro-em-Risco (PAR). O preço e os factores de risco de volume são caracterizados por um valor médio e um desvio padrão, e são modelizados por distribuições normais. Os resultados numéricos são obtidos utilizando a simulação de Monte Carlo implementado em Matlab, e que é aplicado a um produtor que mantém uma carteira diversificada de tecnologias de geração, para um horizonte temporal de um ano. Esta dissertação está organizada da seguinte forma: o capítulo 1, 2 e 3 descrevem o estado-da-arte relacionado com a gestão de risco na comercialização de energia eléctrica. O capítulo 4 descreve o modelo desenvolvido e implementado, onde é também apresentado um estudo de caso com uma aplicação do modelo para avaliar o risco de negociação de um produtor. No capítulo 5 são apresentadas as principais conclusões.
Resumo:
With the electricity market liberalization, the distribution and retail companies are looking for better market strategies based on adequate information upon the consumption patterns of its electricity consumers. A fair insight on the consumers’ behavior will permit the definition of specific contract aspects based on the different consumption patterns. In order to form the different consumers’ classes, and find a set of representative consumption patterns we use electricity consumption data from a utility client’s database and two approaches: Two-step clustering algorithm and the WEACS approach based on evidence accumulation (EAC) for combining partitions in a clustering ensemble. While EAC uses a voting mechanism to produce a co-association matrix based on the pairwise associations obtained from N partitions and where each partition has equal weight in the combination process, the WEACS approach uses subsampling and weights differently the partitions. As a complementary step to the WEACS approach, we combine the partitions obtained in the WEACS approach with the ALL clustering ensemble construction method and we use the Ward Link algorithm to obtain the final data partition. The characterization of the obtained consumers’ clusters was performed using the C5.0 classification algorithm. Experiment results showed that the WEACS approach leads to better results than many other clustering approaches.
Resumo:
Long-term contractual decisions are the basis of an efficient risk management. However those types of decisions have to be supported with a robust price forecast methodology. This paper reports a different approach for long-term price forecast which tries to give answers to that need. Making use of regression models, the proposed methodology has as main objective to find the maximum and a minimum Market Clearing Price (MCP) for a specific programming period, and with a desired confidence level α. Due to the problem complexity, the meta-heuristic Particle Swarm Optimization (PSO) was used to find the best regression parameters and the results compared with the obtained by using a Genetic Algorithm (GA). To validate these models, results from realistic data are presented and discussed in detail.
Resumo:
A novel hybrid approach, combining wavelet transform, particle swarm optimization, and adaptive-network-based fuzzy inference system, is proposed in this paper for short-term electricity prices forecasting in a competitive market. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Finally, conclusions are duly drawn.
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.
Resumo:
Renewable based power generation has significantly increased over the last years. However, this process has evolved separately from electricity markets, leading to an inadequacy of the present market models to cope with huge quantities of renewable energy resources, and to take full advantage of the presently existing and the increasing envisaged renewable based and distributed energy resources. This paper proposes the modelling of electricity markets at several levels (continental, regional and micro), taking into account the specific characteristics of the players and resources involved in each level and ensuring that the proposed models accommodate adequate business models able to support the contribution of all the resources in the system, from the largest to the smaller ones. The proposed market models are integrated in MASCEM (Multi- Agent Simulator of Competitive Electricity Markets), using the multi agent approach advantages for overcoming the current inadequacy and significant limitations of the presently existing electricity market simulators to deal with the complex electricity market models that must be adopted.