1000 resultados para Leucipa y Clitofonte
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Digital image
Resumo:
Effect of sonochemical irradiation on the conversion of 2-alkoxytetrahydrofurans to γ-butyro-1actores by Jones reagent, and its extension to the highly stereoselective synthesis of quercus lactone a, is reported.
Resumo:
Molecular dynamics simulations are reported on the structure and dynamics of n-decane and 3-methylpentane in zeolite NaY. We have calculated several properties such as the center of mass-center of mass rdf, the end-end distance distribution, bond angle distribution and dihedral angle distribution. We have also analysed trajectory to obtain diffusivity and velocity autocorrelation function (VACF). Surprisingly, the diffusivity of 3-methylpentane which is having larger cross-section perpendicular to the long molecular axis is higher than n-decane at 300 K. Activation energies have been obtained from simulations performed at 200 K, 300 K, 350 K, 400 K and 450 K in the NVE ensemble. These results can be understood in terms of the previously known levitation effect. Arrhenious plot has higher value of slope for n-decane (5 center dot 9 kJ/mol) than 3-methylpentane (3 center dot 7 kJ/mol) in agreement with the prediction of levitation effect.
Resumo:
Yttrium silicates (Y-Si-O oxides), including Y2Si2O7, Y2SiO5, and Y4·67(SiO4)3O apatite, have attracted wide attentions from material scientists and engineers, because of their extensive polymorphisms and important roles as grain boundary phases in improving the high-temperature mechanical/thermal properties of Si3N4and SiC ceramics. Recent interest in these materials has been renewed by their potential applications as high-temperature structural ceramics, oxidation protective coatings, and environmental barrier coatings (EBCs). The salient properties of Y-Si-O oxides are strongly related to their unique chemical bonds and microstructure features. An in-depth understanding on the synthesis - multi-scale structure-property relationships of the Y-Si-O oxides will shine a light on their performance and potential applications. In this review, recent progress of the synthesis, multi-scale structures, and properties of the Y-Si-O oxides are summarised. First, various methods for the synthesis of Y-Si-O ceramics in the forms of powders, bulks, and thin films/coatings are reviewed. Then, the crystal structures, chemical bonds, and atomic microstructures of the polymorphs in the Y-Si-O system are summarised. The third section focuses on the properties of Y-Si-O oxides, involving the mechanical, thermal, dielectric, and tribological properties, their environmental stability, and their structure-property relationships. The outlook for potential applications of Y-Si-O oxides is also highlighted.
Resumo:
A stable Y-doped BaZrO3 electrolyte film, which showed a good performance in proton-conducting SOFCs, was successfully fabricated using a novel ionic diffusion strategy.
Resumo:
Thermal properties, namely, Debye temperature, thermal expansion coefficient, heat capacity, and thermal conductivity of γ-Y 2Si2O7, a high-temperature polymorph of yttrium disilicate, were investigated. The anisotropic thermal expansions of γ-Y2Si2O7 powders were examined using high-temperature X-ray diffractometer from 300 to 1373 K and the volumetric thermal expansion coefficient is (6.68±0.35) × 10-6 K-1. The linear thermal expansion coefficient of polycrystalline γ-Y2Si2O7 determined by push-rod dilatometer is (3.90±0.4) × 10-6 K-1, being very close to that of silicon nitride and silicon carbide. Besides, γ-Y2Si2O7 displays a low-thermal conductivity, with a κ value measured below 3.0 W·(m·K) -1 at the temperatures above 600 K. The calculated minimum thermal conductivity, κmin, was 1.35 W·(m·K) -1. The unique combination of low thermal expansion coefficient and low-thermal conductivity of γ-Y2Si2O7 renders it a very competitive candidate material for high temperature structural components and environmental/thermal-barrier coatings. The thermal shock resistance of γ-Y2Si2O7 was estimated by quenching dense materials in water from various temperatures and the critical temperature difference, ΔTc, was determined to be 300 K.
Resumo:
γ-Y 2Si 2O 7 is a promising candidate material both for hightemperature structural applications and as an environmental/thermal barrier coating material due to its unique properties such as high melting point, machinability, thermal stability, low linear thermal expansion coefficient (3.9×10 -6/K, 200°-1300°C), and low thermal conductivity (<3.0 W/ṁK above 300°C). The hot corrosion behavior of γ-Y 2Si 2O 7 in thin-film molten Na 2SO 4 at 850°-1000°C for 20 h in flowing air was investigated using a thermogravimetric analyzer (TGA) and a mass spectrometer (MS). γ-Y 2Si 2O 7 exhibited good resistance against Na 2SO 4 molten salt. The kinetic curves were well fitted by a paralinear equation: the linear part was caused by the evaporation of Na2SO4 and the parabolic part came from gas products evolved from the hotcorrosion reaction. A thin silica film formed under the corrosion scale was the key factor for retarding the hot corrosion. The apparent activation energy for the corrosion of γ-Y 2Si 2O 7 in Na 2SO 4 molten salt with flowing air was evaluated to be 255 kJ/mol.
Resumo:
We report formation of new noncentrosymmetric oxides of the formula, R3Mn1.5CuV0.5O9 for R = Y, Ho, Er, Tm, Yb and Lu, possessing the hexagonal RMnO3 (space group P6(3)cm) structure. These oxides could be regarded as the x = 0.5 members of a general series R3Mn3-3xCu2xVxO9. Investigation of the Lu-Mn-Cu-V-O system reveals the existence of isostructural solid solution series, Lu3Mn3-3xCu2xVxO9 for 0 < x <= 0.75. Magnetic and dielectric properties of the oxides are consistent with a random distribution of Mn3+, Cu2+ and V5+ atoms that preserve the noncentrosymmetric RMnO3 structure. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Al-4.4 a/oZn and Al-4.4 a/oZn with Ag, Ce, Dy, Li, Nb, Pt, Y, or Yb, alloys have been investigated by resistometry with a view to study the solute-vacancy interactions and clustering kinetics in these alloys. Solute-vacancy binding energies have been evaluated for all these elements by making use of appropriate methods of evaluation. Ag and Dy additions yield some interesting results and these have been discussed in the thesis. Solute-vacancy binding energy values obtained here have been compared with other available values and discussed. A study of the type of interaction between vacancies and solute atoms indicates that the valency effect is more predominant than the elastic effect.
Resumo:
In the (Bi,Pb)-Sr-Cu-O system we have examined many compositions which are either metallic or semiconducting. In the Bi2-xPbx(Ca, Sr)n+1 Cun O2n+4+δ system, we have established the superconducting properties of the n = 1 to 4 members. The Tc increases from n = 1 to 3 and does not increase further when n = 4. In Bi2Ca1-x,YxSr2Cu2Oy, the Tc decreases with increase in x.
Resumo:
Reaction of sodium 2-formylbenzenesulphonate (1) with thionyl chloride or phosphorous pentachloride gives a mixture of pseudo (2) and normal (3) sulphonyl chlorides. Whereas ammonium 2-carboxybenzenesulphonate (6) gives only the normal sulphonyl chloride (7) on reaction with thionyl chloride, a mixture of normal (7) and pseudo (8) isomers are formed on reaction with phosphorous pentachloride. Sodium 2-benzoylbenzenesulphonate (15), on the other hand, gives the corresponding normal sulphonyl chloride (16) on reaction with both of the reagents mentioned above. Based on these observations it is concluded that γ-keto sulphonic acids are amenable to the influence of γ-carbonyl group as in the case of γ-keto carboxylic acids but to a lesser extent. © 1989 Indian Academy of Sciences.
Resumo:
Rare earth exchanged H–Y zeolites were prepared by simple ion exchange methods at 353 K and have been characterized using different physicochemical techniques. A strong peak around 58 ppm in the 27Al{1H} MAS NMR spectra of these zeolites suggests a tetrahedral coordination for the framework aluminium. Small peak at or near 0 ppm is due to hexa-coordinated extra-framework aluminium and a shoulder peak near 30 ppm is a penta-coordinated aluminium species; [Al(OH)4]−. The vapor-phase benzene alkylation with 1-decene and 1-dodecene was investigated with these catalytic systems. Under the reaction conditions of 448 K, benzene/olefin molar ratio of 20 and time on stream 3 h, the most efficient catalyst was CeH–Y which showed more than 70% of olefin conversion with 48.5% 2-phenyldecane and 46.8%, 2-phenyldodecane selectivities with 1-decene and 1-dodecene respectively.