244 resultados para Leptons
Resumo:
We propose a scheme in which the masses of the heavier leptons obey seesaw type relations. The light lepton masses, except the electron and the electron neutrino ones, are generated by one loop level radiative corrections. We work in a version of the 3-3-1 electroweak model that predicts singlets (charged and neutral) of heavy leptons beyond the known ones. An extra U(1)(Omega) symmetry is introduced in order to avoid the light leptons getting masses at the tree level. The electron mass induces an explicit symmetry breaking at U(1)(Omega). We discuss also the mixing matrix among four neutrinos. The new energy scale required is not higher than a few TeV.
Resumo:
We study the prospects of observing the presence of a relatively light Elko particle as a possible dark matter candidate, by pointing out a typical signature for the process encompassing the Elko non-locality, exploring some consequences of the unusual Elko propagator behavior when analyzed outside the Elko axis of propagation. We also consider the production of a light Elko associated to missing energy and isolated leptons at the LHC, with center of mass energy of 7 and 14 TeV and total luminosity from 1 fb(-1) to 10 fb(-1). Basically, the Elko non-locality engenders a peculiar signal in the missing energy turning it sensible to the angle of detection. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We study the collider phenomenology of bilinear R-parity violating supergravity, the simplest effective model for supersymmetric neutrino masses accounting for the current neutrino oscillation data. At the CERN Large Hadron Collider the center-of-mass energy will be high enough to probe directly these models through the search for the superpartners of the Standard Model (SM) particles. We analyze the impact of R-parity violation on the canonical supersymmetry searches-that is, we examine how the decay of the lightest supersymmetric particle (LSP) via bilinear R-parity violating interactions degrades the average expected missing momentum of the reactions and show how this diminishes the reach in the usual channels for supersymmetry searches. However, the R-parity violating interactions lead to an enhancement of the final states containing isolated same-sign di-leptons and trileptons, compensating the reach loss in the fully inclusive channel. We show how the searches for displaced vertices associated to LSP decay substantially increase the coverage in supergravity parameter space, giving the corresponding reaches for two reference luminosities of 10 and 100 fb(-1) and compare with those of the R-parity conserving minimal supergravity model.
Resumo:
We investigate a neutrino mass model in which the neutrino data is accounted for by bilinear R-parity violating supersymmetry with anomaly mediated supersymmetry breaking. We focus on the CERN Large Hadron Collider (LHC) phenomenology, studying the reach of generic supersymmetry search channels with leptons, missing energy and jets. A special feature of this model is the existence of long-lived neutralinos and charginos which decay inside the detector leading to detached vertices. We demonstrate that the largest reach is obtained in the displaced vertices channel and that practically all of the reasonable parameter space will be covered with an integrated luminosity of 10 fb(-1). We also compare the displaced vertex reaches of the LHC and Tevatron.
Resumo:
In this work, using the fact that in 3-3-1 models the same leptonic bilinear contributes to the masses of both charged leptons and neutrinos, we develop an effective operator mechanism to generate mass for all leptons. The effective operators have dimension five for the case of charged leptons and dimension seven for neutrinos. By adding extra scalar multiplets and imposing the discrete symmetry Z(9)xZ(2) we are able to generate realistic textures for the leptonic mixing matrix. This mechanism requires new physics at the TeV scale.
Resumo:
Given its weak coupling to bottom quarks and tau leptons, the Higgs boson may predominantly decay into invisible particles like gravitinos, neutralinos, or gravitons. We consider the manifestation of such an invisibly decaying Higgs boson in weak boson fusion at the CERN LHC. Distinctive kinematic distributions of the two quark jets of the signal as compared to Zjj and Wjj backgrounds allow to restrict the Higgs branching ratio to 'invisible' final states to some 13% with 10 fb(-1) of data, provided events with two energetic forward jets of high dijet invariant mass and with substantial missing transverse momentum can be triggered efficiently. It is also possible to discover these particles with masses up to 480 GeV in weak boson fusion, at the 5 sigma level, provided their invisible branching ratio is close to 100%. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
Within a wide class of models, the CERN LEP2 lower limit of 95 GeV on the chargino mass implies gluinos are heavier than similar to 300 GeV. In this case electroweak (W) over tilde(1)(W) over tilde(1) production and (W) over tilde(1)(Z) over tilde(2) production are the dominant supersymmerry (SUSY) processes at the Fermilab Tevatron, and the extensively examined isolated trilepton signal From (W) over tilde(1)(Z) over tilde(2) production assumes an even greater importance. We update our previous calculations of the SUSY reach of luminosity upgrades of the Fermilab Tevatron in this channel incorporating (i) decay matrix elements in the computation of the momenta of leptons from chargino and neutralino decays, (ii) the trilepton background from W*Z* and W*gamma* production which, though neglected in previous analyses, turns out to be the dominant background, and finally, (iii) modified sets of cuts designed to reduce these new backgrounds and increase the range of model parameters for which the signal is observable. We show our improved projections for the reach for SUSY of both the Fermilab Main Injector and the proposed TeV33 upgrade. We also present opposite sign same flavor dilepton invariant mass distributions as well as the p(T) distributions of leptons in SUSY trilepton events, and comment upon how the inclusion of decay matrix elements impacts upon the Tevatron reach, as well as upon the extraction of neutralino masses.
Resumo:
The recent experimental results on neutrino oscillation and on muonium-antimuonium conversion require extension of the minimal 3-3-1 model. We review the constraints imposed on the model by these measurements and suggest a pattern of leptonic mixing, with charged leptons in a non-diagonal basis, which accounts for the neutrino physics and circumvents the tight muonium-antimuonium bounds on the model. We also illustrate a scenario where this pattern could be realized.
Resumo:
A search for gaugino pair production with a trilepton signature in the framework of R-parity violating supersymmetry via the couplings; lambda(121), lambda(122), or lambda(133) is presented. The data, corresponding to an integrated luminosity of L approximate to 360 pb(-1), were collected from April 2002 to August 2004 with the D0 detector at the Fermilab Tevatron Collider, at a center-of-mass energy of root s = 1.96 TeV. This analysis considers final states with three charged leptons with the flavor combinations eel, mu mu l, and ee tau (l = e or mu). No evidence for supersymmetry is found and limits at the 95% confidence level are set on the gaugino pair production cross section and lower bounds on the masses of the lightest neutralino and chargino are derived in two supersymmetric models. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In the minimal 3-3-1 model charged leptons come in a nondiagonal basis. Moreover, the Yukawa interactions of the model lead to a non-hermitian charged lepton mass matrix. In other words, the minimal 3-3-1 model presents a very complex lepton mixing. In view of this we check rigorously if the possible textures of the lepton mass matrices allowed by the minimal 3-3-1 model can lead or not to the neutrino mixing required by the recent experiments in neutrino oscillation.
Resumo:
We present a search for the production of a new heavy gauge boson W' that decays to a top quark and a bottom quark. We have analyzed 230 pb(-1) of data collected with the DO detector at the Fermilab Tevatron collider at a center-of-mass energy of 1.96 TeV. No significant excess of events above the standard model expectation is found in any region of the final state invariant mass distribution. We set upper limits on the production cross section of W' bosons times branching ratio to top quarks at the 95% confidence level for several different W, boson masses. We exclude masses between 200 and 610 GeV for a W' boson with standard-model-like couplings, between 200 and 630 GeV for a W, boson with right-handed couplings that is allowed to decay to both leptons and quarks, and between 200 and 670 GeV for a W' boson with right-handed couplings that is only allowed to decay to quarks. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We present a study of eey and mu mu gamma events using 1109 (1009) pb-(1) of data in the electron (muon) channel, respectively. These data were collected with the DO detector at the Fermilab Tevatron pp collider at Is = 1.96 TeV. Having observed 453 (515) candidates in the eey (jtAy) final state, we measure the Z gamma production cross section for a photon with transverse energy ET > 7 GeV, separation between the photon and leptons Delta Rey > 0.7, and invariant mass of the di-lepton pair Mee > 30 GeV/(2)(c), to be 4.96 0.30(stat. + syst.) zE 0.30(lumi.) pb, in agreement with the Standard Model prediction of 4.74 0.22 pb. This is the most precise Zy cross section measurement at a hadron collider. We set limits on anomalous trilinear Zyy and ZZy gauge boson couplings of -0.085 < h(30)(y) < 0.084, -0.0053 < h(40)(y) < 0.0054 and -0.083 < h(30)(Z) < 0.082, 30 40 30 -0.0053 < h(40)(Z) < 0.0054 at the 95% C.L. for the form-factor scale A = 1.2 TeV. 40 Published by Elsevier B.V.
Resumo:
We present a measurement of the t (t) over bar pair production cross section in p (p) over bar collisions at root s=1.96 TeV utilizing approximately 425 pb(-1) of data collected with the D0 detector. We consider decay channels containing two high p(T) charged leptons (either e or mu) from leptonic decays of both top-daughter W bosons. These were gathered using four sets of selection criteria, three of which required that a pair of fully identified leptons (i.e., e mu, ee, or mu mu) be found. The fourth approach imposed less restrictive criteria on one of the lepton candidates and required that at least one hadronic jet in each event be tagged as containing a b quark. For a top quark mass of 175 GeV, the measured cross section is 7.4 +/- 1.4(stat)+/- 1.0(syst) pb and for the current Tevatron average top quark mass of 170.9 GeV, the resulting value of the cross section is 7.8 +/- 1.8(stat+syst) pb.
Resumo:
We establish constraints on a general four-fermion contact interaction from precise measurements of electroweak parameters. We compute the one-loop contribution for the leptonic Z width, anomalous magnetic, weak-magnetic, electric and weak dipole moments of leptons in order to extract bounds on the energy scale of these effective interactions.
Resumo:
We present a measurement of the cross section for Z production times the branching fraction to tau leptons, sigma.Br(Z ->tau(+)tau(-)), in p (p) over bar collisions at root s=1.96 TeV in the channel in which one tau decays into mu nu(mu)nu(tau), and the other into hadrons+nu(tau) or e nu(e)nu(tau). The data sample corresponds to an integrated luminosity of 226 pb(-1) collected with the D0 detector at the Fermilab Tevatron collider. The final sample contains 2008 candidate events with an estimated background of 55%. From this we obtain sigma.Br(Z ->tau(+)tau(-)) = 237 +/- 15(stat)+/- 18(sys)+/- 15(lum)pb, in agreement with the standard model prediction.