979 resultados para Length measurement
Resumo:
Objectives: the purpose of this study is to employ optical microscopy to measure the thickness of the hybrid layer and the penetration (tags) of an aggressive self-etching adhesive system into sound dentin.Methods: occtusat cavities were prepared in 40 extracted human posterior teeth. The prepared teeth were randomly assigned to four experimental groups with 10 specimens each. The self-etching adhesive system Adper Prompt L-Pop was applied to the dentin surface as follows: Group 1: cavosurface enamel was etched for 60 s and dentin for 20 s with 35% phosphoric acid get, immediately followed by application of the self -etching adhesive with a brush to the entire cavity for 15 s; Groups 2, 3, and 4: no pre-etching was performed, and the self -etching adhesive was applied to both enamel and dentin for 15, 30 and 45 s, respectively. After curing, the cavities were fitted with composite resin Fittek Z250. Afterwards, the teeth were decalcified and the restorations were carefully removed for later embedding in paraffin. The specimens were serially sectioned at 6 mu m of thickness and sequentially mounted in glass slides. These sections were stained with Brown and Brenn staining for posterior analysis and measurement of the hybrid layer and resin tags on a tight microscope with a micrometric ocular 40/075. The results were submitted to analysis of variance at the 5% level.Results: whenever there was significance, the Tukey test was applied at the 5% level. The specimens receiving application of acid etching before the selfetching. adhesive displayed a larger thickness of the hybrid layer; on the other hand, specimens receiving only application of the self -etching adhesive on dentin for 15, 30 and 45 s exhibited similar thickness of the hybrid layer. As regards the resin tags, no statistically significant differences could be found between the study groups.Conclusions: it could be concluded that the increase in the time of application of the self-etching adhesive Adper Prompt L-Pop did not significantly influence the formation and thickness of hybrid layer, as well as its penetration into the sound dentin surface. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: the purpose of this in vivo study was to compare the accuracy of primary incisor length determined by direct digital radiography (straight-line measurement and grid superimposition) and measurement of the actual tooth length. Methods. Twenty-two primary maxillary incisors that required extractions were selected from 3- to 5-year-old children. The teeth were radiographed with an intraoral sensor using the long cone technique and a sensor holder (30-cm focus-to-sensor distance). The exposure time was 03 seconds. Tooth length was estimated by using straight-line and grid measurements provided by the distance measurement feature of the Computed Dental Radiography digital dental imaging system. The actual tooth length was obtained by measuring the extracted tooth with G digital caliper. Data were analyzed statistically by Pearson's correlation coefficient and a paired t test. Results: There were statistically significant differences (P=.007) between the 2 measurement techniques and between the actual tooth lengths and grid measurements. There was no statistically significant difference (P=38) between straight-line measurements and actual tooth lengths, showing that the straight-line measurements were more accurate. Underestimation of the actual tooth length, however, occurred in 45% of the straight-line measurements and in 73% of the grid measurements. Conclusion: It is possible to determine primary tooth length in digital radiographs using onscreen measurements with 0 reasonable degree of accuracy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Aim: This in vitro study evaluated the accuracy of primary incisor lengths determined by digital and conventional radiography compared to the actual tooth length. Methods: Twenty extracted primary maxillary incisors were mounted in acrylic blocks. Tooth length was estimated by using a straight-line measurement provided by the distance measurement tool of a digital dental imaging system (Computed Dental Radiography, Schick Technologies Inc.) and conventional E-speed film radiographs by using a digital caliper. Two operators familiar with both radiographic methods performed the estimates. The estimated tooth lengths were compared to the actual tooth lengths measured with the digital caliper. Data were statistically analyzed by Dahlberg's equation, paired t test, Pearson's correlation coefficient and ANOVA at 5% significance level. Results: There were no statistically significant differences (p = 0.85) between tooth length estimated on digital and conventional radiographs. Admitting as clinically acceptable a 0.5-mm discrepancy between the actual tooth lengths and the radiographically estimated lengths, 60% of the radiographic measurements were considered as accurate. When the acceptable difference range was 1.0 mm, the accuracy of the radiographic measurements increased to 100%. Conclusions: Digital and conventional radiography provided similar tooth length measurements and were equivalent to the actual tooth lengths.
Resumo:
The influence of soil drill rod length on the N value in the SPT-T test has been studied extensively by Mello (1971), Schmertmann & Palacios (1979), Odebrecht et al. (2002) and Cavalcante (2002). This paper presents an analysis of the Standard Penetration Test supplemented with torque measurement (SPT-T). A theoretical study of the resistance of the rod material to torsion and bending indicated that the shear stress caused by the rod self-weight represents less than 1% of that caused by the torsional moment. An experimental study with electric torquemeters attached to a horizontal rod system, as well as two field tests in the vertical direction, were also carried out to compare and substantiate the results. The purpose of these tests was to analyze changes along the length of the rod in response to successive increments at 1-meter intervals. Torque measurements were taken at each increment of the length to ascertain the accuracy of the theoretical data. The difference between the applied torque and the measured torque at the end of rod system was lower than the minimum scale of mechanical torquemeters used in practice.
Resumo:
We present a measurement of the semileptonic mixing asymmetry for B0 mesons, asld, using two independent decay channels: B0→μ +D -X, with D -→K +π -π -; and B0→μ +D *-X, with D * -→D ̄0π -, D ̄0→ K +π - (and charge conjugate processes). We use a data sample corresponding to 10.4fb -1 of pp̄ collisions at √s=1.96TeV, collected with the D0 experiment at the Fermilab Tevatron collider. We extract the charge asymmetries in these two channels as a function of the visible proper decay length of the B0 meson, correct for detector-related asymmetries using data-driven methods, and account for dilution from charge-symmetric processes using Monte Carlo simulation. The final measurement combines four signal visible proper decay length regions for each channel, yielding asld=[0.68±0.45(stat)±0.14(syst)]%. This is the single most precise measurement of this parameter, with uncertainties smaller than the current world average of B factory measurements. © 2012 American Physical Society.
Resumo:
The external detector method (EDM) is a widely used technique in fission track thermochronology (FTT) in which two different minerals are concomitantly employed: spontaneous tracks are observed in apatite and induced ones in the muscovite external detector. They show intrinsic differences in detection and etching properties that should be taken into account. In this work, new geometry factor values, g, in apatite, were obtained by directly measuring the ρed/ρis ratios and independently determined [GQR]ed/is values through the measurement of projected lengths. Five mounts, two of which were large area prismatic sections and three samples composed of random-orientation pieces have been used to determine the g-values. A side effect of applying EDM is that the value of the initial confined induced fission track, L0, is not measured in routine analyses. The L 0-value is an important parameter to quantify with good confidence the degree of annealing of the spontaneous fission tracks in unknown-age samples, and is essential for accurate thermal history modeling. The impact of using arbitrary L0-values on the inference of sample thermal history is investigated and discussed. The measurement of the L0-value for each sample to be dated using an extra irradiated apatite mount is proposed. This extra mount can be also used for determining the g value as an extension of the ρed/ρis ratio method. Eight apatite samples from crystalline basement, with grains at random orientation, were used to determine the g-values. The results found are statistically in agreement with the values found for apatite samples (from Durango, Mexico) measured in prismatic section and also measured at random orientation. There was no observable variation in efficiency regarding crystal orientation, showing that it is relatively safe using non-prismatic grains, especially in samples with paucity of grains, as it is the case of most basin samples. Implications for the ζ-calibration and for the calibration of the direct (spectrometer-based) fission-track dating are also discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Objectives: To compare, in vivo, the accuracy of conventional and digital radiographic methods in determining root canal working length. Material and Methods: Twenty-five maxillary incisor or canine teeth from 22 patients were used in this study. Considering the preoperative radiographs as the baseline, a 25 K file was inserted into the root canal to the point where the Root ZX electronic apex locator indicated the APEX measurement in the screen. From this measurement, 1 mm was subtracted for positioning the file. The radiographic measurements were made using a digital sensor (Digora 1.51) or conventional type-E films, size 2, following the paralleling technique, to determine the distance of the file tip and the radiographic apex. Results: The Student "t" test indicated mean distances of 1.11 mm to conventional and 1.20 mm for the digital method and indicated a significant statistical difference (p<0.05). Conclusions: The conventional radiographic method was found to be superior to the digital one in determining the working length of the root canal.
Resumo:
This thesis presents a possible method to calculate sea level variation using geodetic-quality Global Navigate Satellite System (GNSS) receivers. Three antennas are used: two small antennas and a choke ring one, analyzing only Global Positioning System signals. The main goal of the thesis is to test a modified configuration for antenna set up. In particular, measurements obtained tilting one antenna to face the horizon are compared to measurements obtained from antennas looking upward. The location of the experiment is a coastal environment nearby the Onsala Space Observatory in Sweden. Sea level variations are obtained using periodogram analysis of the SNR signal and compared to synthetic gauge generated from two independent tide gauges. The choke ring antenna provides poor result, with an RMS around 6 cm and a correlation coefficients of 0.89. The smaller antennas provide correlation coefficients around 0.93. The antenna pointing upward present an RMS of 4.3 cm and the one pointing the horizon an RMS of 6.7 cm. Notable variation in the statistical parameters is found when modifying the length of the interval analyzed. In particular, doubts are risen on the reliability of certain scattered data. No relation is found between the accuracy of the method and weather conditions. Possible methods to enhance the available data are investigated, and correlation coefficient above 0.97 can be obtained with small antennas when sacrificing data points. Hence, the results provide evidence of the suitability of SNR signal analysis for sea level variation in coastal environment even in the case of adverse weather conditions. In particular, tilted configurations provides comparable result with upward looking geodetic antennas. A SNR signal simulator is also tested to investigate its performance and usability. Various configuration are analyzed in combination with the periodogram procedure used to calculate the height of reflectors. Consistency between the data calculated and those received is found, and the overall accuracy of the height calculation program is found to be around 5 mm for input height below 5 m. The procedure is thus found to be suitable to analyze the data provided by the GNSS antennas at Onsala.
Resumo:
The behaviour of a polymer depends strongly on the length- and time scale as well as on the temperature rnat which it is probed. In this work, I describe investigations of polymer surfaces using scanning probe rnmicroscopy with heatable probes. With these probes, surfaces can be heated within seconds down to rnmicroseconds. I introduce experiments for the local and fast determination of glass transition and melting rntemperatures. I developed a method which allows the determination of glass transition and melting rntemperatures on films with thicknesses below 100 nm: A background measurement on the substrate was rnperformed. The resulting curve was subtracted from the measurement on the polymer film. The rndifferential measurement on polystyrene films with thicknesses between 35 nm and 160 nm showed rncharacteristic signals at 95 ± 1 °C, in accordance with the glass transition of polystyrene. Pressing heated rnprobes into polymer films causes plastic deformation. Nanometer sized deformations are currently rninvestigated in novel concepts for high density data storage. A suitable medium for such a storage system rnhas to be easily indentable on one hand, but on the other hand it also has to be very stable towards rnsurface induced wear. For developing such a medium I investigated a new approach: A comparably soft rnmaterial, namely polystyrene, was protected with a thin but very hard layer made of plasma polymerized rnnorbornene. The resulting bilayered media were tested for surface stability and deformability. I showed rnthat the bilayered material combines the deformability of polystyrene with the surface stability of the rnplasma polymer, and that the material therefore is a very good storage medium. In addition we rninvestigated the glass transition temperature of polystyrene at timescales of 10 µs and found it to be rnapprox. 220 °C. The increase of this characteristic temperature of the polymer results from the short time rnat which the polymer was probed and reflects the well-known time-temperature superposition principle. rnHeatable probes were also used for the characterization of silverazide filled nanocapsules. The use of rnheatable probes allowed determining the decomposition temperature of the capsules from few rnnanograms of material. The measured decomposition temperatures ranged from 180 °C to 225 °C, in rnaccordance with literature values. The investigation of small amounts of sample was necessary due to the rnlimited availability of the material. Furthermore, investigating larger amounts of the capsules using rnconventional thermal gravimetric analysis could lead to contamination or even damage of the instrument. rnBesides the analysis of material parameters I used the heatable probes for the local thermal rndecomposition of pentacene precursor material in order to form nanoscale conductive structures. Here, rnthe thickness of the precursor layer was important for complete thermal decomposition. rnAnother aspect of my work was the investigation of redox active polymers - Poly-10-(4-vinylbenzyl)-10H-rnphenothiazine (PVBPT)- for data storage. Data is stored by changing the local conductivity of the material rnby applying a voltage between tip and surface. The generated structures were stable for more than 16 h. It rnwas shown that the presence of water is essential for succesfull patterning.
Resumo:
For the development of meniscal substitutes and related finite element models it is necessary to know the mechanical properties of the meniscus and its attachments. Measurement errors can falsify the determination of material properties. Therefore the impact of metrological and geometrical measurement errors on the determination of the linear modulus of human meniscal attachments was investigated. After total differentiation the error of the force (+0.10%), attachment deformation (−0.16%), and fibre length (+0.11%) measurements almost annulled each other. The error of the cross-sectional area determination ranged from 0.00%, gathered from histological slides, up to 14.22%, obtained from digital calliper measurements. Hence, total measurement error ranged from +0.05% to −14.17%, predominantly affected by the cross-sectional area determination error. Further investigations revealed that the entire cross-section was significantly larger compared to the load-carrying collagen fibre area. This overestimation of the cross-section area led to an underestimation of the linear modulus of up to −36.7%. Additionally, the cross-sections of the collagen-fibre area of the attachments significantly varied up to +90% along their longitudinal axis. The resultant ratio between the collagen fibre area and the histologically determined cross-sectional area ranged between 0.61 for the posterolateral and 0.69 for the posteromedial ligament. The linear modulus of human meniscal attachments can be significantly underestimated due to the use of different methods and locations of cross-sectional area determination. Hence, it is suggested to assess the load carrying collagen fibre area histologically, or, alternatively, to use the correction factors proposed in this study.
Resumo:
PURPOSE: Two noninvasive methods to measure dental implant stability are damping capacity assessment (Periotest) and resonance frequency analysis (Osstell). The objective of the present study was to assess the correlation of these 2 techniques in clinical use. MATERIALS AND METHODS: Implant stability of 213 clinically stable loaded and unloaded 1-stage implants in 65 patients was measured in triplicate by means of resonance frequency analysis and Periotest. Descriptive statistics as well as Pearson's, Spearman's, and intraclass correlation coefficients were calculated with SPSS 11.0.2. RESULTS: The mean values were 57.66 +/- 8.19 implant stability quotient for the resonance frequency analysis and -5.08 +/- 2.02 for the Periotest. The correlation of both measuring techniques was -0.64 (Pearson) and -0.65 (Spearman). The single-measure intraclass correlation coefficients for the ISQ and Periotest values were 0.99 and 0.88, respectively (95% CI). No significant correlation of implant length with either resonance frequency analysis or Periotest could be found. However, a significant correlation of implant diameter with both techniques was found (P < .005). The correlation of both measuring systems is moderate to good. It seems that the Periotest is more susceptible to clinical measurement variables than the Osstell device. The intraclass correlation indicated lower measurement precision for the Periotest technique. Additionally, the Periotest values differed more from the normal (Gaussian) curve of distribution than the ISQs. Both measurement techniques show a significant correlation to the implant diameter. CONCLUSION: Resonance frequency analysis appeared to be the more precise technique.