850 resultados para Legendre polynomials
Resumo:
The known permutation behaviour of the Dickson polynomials of the second kind in characteristic 3 is expanded and simplified. (C) 2002 Elsevier Science (USA).
Resumo:
A new class of bilinear permutation polynomials was recently identified. In this note we determine the class of permutation polynomials which represents the functional inverse of the bilinear class.
Resumo:
In the framework of multibody dynamics, the path motion constraint enforces that a body follows a predefined curve being its rotations with respect to the curve moving frame also prescribed. The kinematic constraint formulation requires the evaluation of the fourth derivative of the curve with respect to its arc length. Regardless of the fact that higher order polynomials lead to unwanted curve oscillations, at least a fifth order polynomials is required to formulate this constraint. From the point of view of geometric control lower order polynomials are preferred. This work shows that for multibody dynamic formulations with dependent coordinates the use of cubic polynomials is possible, being the dynamic response similar to that obtained with higher order polynomials. The stabilization of the equations of motion, always required to control the constraint violations during long analysis periods due to the inherent numerical errors of the integration process, is enough to correct the error introduced by using a lower order polynomial interpolation and thus forfeiting the analytical requirement for higher order polynomials.
Resumo:
The theory of orthogonal polynomials of one real or complex variable is well established as well as its generalization for the multidimensional case. Hypercomplex function theory (or Clifford analysis) provides an alternative approach to deal with higher dimensions. In this context, we study systems of orthogonal polynomials of a hypercomplex variable with values in a Clifford algebra and prove some of their properties.
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Diss., 2011
Resumo:
Magdeburg, Univ., Fak. für Mathematik, Habil.-Schr., 2014
Resumo:
The main aim of this short paper is to advertize the Koosis theorem in the mathematical community, especially among those who study orthogonal polynomials. We (try to) do this by proving a new theorem about asymptotics of orthogonal polynomi- als for which the Koosis theorem seems to be the most natural tool. Namely, we consider the case when a SzegÄo measure on the unit circumference is perturbed by an arbitrary measure inside the unit disk and an arbitrary Blaschke sequence of point masses outside the unit disk.
Resumo:
"Vegeu el resum a l'inici del document del fitxer adjunt."
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Vegeu el resum a l'inici del document del fitxer adjunt.
Resumo:
Vegeu el resum a l'inici del document de l'arxiu adjunt
Resumo:
Quantum states can be used to encode the information contained in a direction, i.e., in a unit vector. We present the best encoding procedure when the quantum state is made up of N spins (qubits). We find that the quality of this optimal procedure, which we quantify in terms of the fidelity, depends solely on the dimension of the encoding space. We also investigate the use of spatial rotations on a quantum state, which provide a natural and less demanding encoding. In this case we prove that the fidelity is directly related to the largest zeros of the Legendre and Jacobi polynomials. We also discuss our results in terms of the information gain.