785 resultados para Learning of improvisation
Resumo:
Background
Clinically integrated teaching and learning are regarded as the best options for improving evidence-based healthcare (EBHC) knowledge, skills and attitudes. To inform implementation of such strategies, we assessed experiences and opinions on lessons learnt of those involved in such programmes.
Methods and Findings
We conducted semi-structured interviews with 24 EBHC programme coordinators from around the world, selected through purposive sampling. Following data transcription, a multidisciplinary group of investigators carried out analysis and data interpretation, using thematic content analysis. Successful implementation of clinically integrated teaching and learning of EBHC takes much time. Student learning needs to start in pre-clinical years with consolidation, application and assessment following in clinical years. Learning is supported through partnerships between various types of staff including the core EBHC team, clinical lecturers and clinicians working in the clinical setting. While full integration of EBHC learning into all clinical rotations is considered necessary, this was not always achieved. Critical success factors were pragmatism and readiness to use opportunities for engagement and including EBHC learning in the curriculum; patience; and a critical mass of the right teachers who have EBHC knowledge and skills and are confident in facilitating learning. Role modelling of EBHC within the clinical setting emerged as an important facilitator. The institutional context exerts an important influence; with faculty buy-in, endorsement by institutional leaders, and an EBHC-friendly culture, together with a supportive community of practice, all acting as key enablers. The most common challenges identified were lack of teaching time within the clinical curriculum, misconceptions about EBHC, resistance of staff, lack of confidence of tutors, lack of time, and negative role modelling.
Conclusions
Implementing clinically integrated EBHC curricula requires institutional support, a critical mass of the right teachers and role models in the clinical setting combined with patience, persistence and pragmatism on the part of teachers.
Resumo:
This paper reports on an innovative Continuing Professional Development (CPD) programme which addressed transition issues and issues with conducting outdoor work and attitudes towards science through ‘Shared Learning' days between elementary and middle school transition classes. Teachers supported each other to overcome issues with conducting outdoor work and contributed their expertise from their educational stage. The project utilised a blended CPD approach of workshops, coteaching and in-class support and was based upon a wealth earlier successful CPD programmes to result in a sound theoretical framework.
The outcomes were measured using a thorough mixed-methods approach. This paper will report on the achieved outcomes with effective outdoor learning as the vehicle to overcome identified issues and key challenges for policy development.
Resumo:
Experience continuously imprints on the brain at all stages of life. The traces it leaves behind can produce perceptual learning [1], which drives adaptive behavior to previously encountered stimuli. Recently, it has been shown that even random noise, a type of sound devoid of acoustic structure, can trigger fast and robust perceptual learning after repeated exposure [2]. Here, by combining psychophysics, electroencephalography (EEG), and modeling, we show that the perceptual learning of noise is associated with evoked potentials, without any salient physical discontinuity or obvious acoustic landmark in the sound. Rather, the potentials appeared whenever a memory trace was observed behaviorally. Such memory-evoked potentials were characterized by early latencies and auditory topographies, consistent with a sensory origin. Furthermore, they were generated even on conditions of diverted attention. The EEG waveforms could be modeled as standard evoked responses to auditory events (N1-P2) [3], triggered by idiosyncratic perceptual features acquired through learning. Thus, we argue that the learning of noise is accompanied by the rapid formation of sharp neural selectivity to arbitrary and complex acoustic patterns, within sensory regions. Such a mechanism bridges the gap between the short-term and longer-term plasticity observed in the learning of noise [2, 4-6]. It could also be key to the processing of natural sounds within auditory cortices [7], suggesting that the neural code for sound source identification will be shaped by experience as well as by acoustics.
Resumo:
Historical time and chronological sequence are usually conveyed to pupils via the presentation of semantic information on printed worksheets, events being rote-memorised according to date. We explored the use of virtual environments in which successive historical events were depicted as “places” in time–space, encountered sequentially in a fly-through. Testing was via “Which came first, X or Y?” questions and picture-ordering. University undergraduates experiencing the history of an imaginary planet performed better after a VE than after viewing a “washing line” of sequential images, or captions alone, especially for items in intermediate list positions. However, secondary children 11–14 years remembered no more about successive events in feudal England when they were presented virtually compared with either paper picture or 2-D computer graphic conditions. Primary children 7–9 years learned more about historical sequence after studying a series of paper images, compared with either VE or computer graphic conditions, remembering more in early/intermediate list positions. Reasons for the discrepant results are discussed and future possible uses of VEs in the teaching of chronology assessed. Keywords: timeline, chronographics
Resumo:
Studies examined the potential use of Virtual Environments (VEs) in teaching historical chronology to 127 children of primary school age (8–9 years). The use of passive fly-through VEs had been found, in an earlier study, to be disadvantageous with this age group when tested for their subsequent ability to place displayed sequential events in correct chronological order. All VEs in the present studies included active challenge, previously shown to enhance learning in older participants. Primary school children in the UK (all frequent computer users) were tested using UK historical materials, but no significant effect was found between three conditions (Paper, PowerPoint and VE) with minimal pre-training. However, excellent (error free) learning occurred when children were allowed greater exploration prior to training in the VE. In Ukraine, with children having much less computer familiarity, training in a VE (depicting Ukrainian history) produced better learning compared to PowerPoint, but no better than in a Paper condition. The results confirmed the benefit of using challenge in a VE with primary age children, but only with adequate prior familiarisation with the medium. Familiarity may reduce working memory load and increase children’s spatial memory capacity for acquiring sequential temporal-spatial information from virtual displays. Keywords: timeline, chronographics
Resumo:
The influence of proximal olfactory cues on place learning and memory was tested in two different spatial tasks. Rats were trained to find a hole leading to their home cage or a single food source in an array of petri dishes. The two apparatuses differed both by the type of reinforcement (return to the home cage or food reward) and the local characteristics of the goal (masked holes or salient dishes). In both cases, the goal was in a fixed location relative to distant visual landmarks and could be marked by a local olfactory cue. Thus, the position of the goal was defined by two sets of redundant cues, each of which was sufficient to allow the discrimination of the goal location. These experiments were conducted with two strains of hooded rats (Long-Evans and PVG), which show different speeds of acquisition in place learning tasks. They revealed that the presence of an olfactory cue marking the goal facilitated learning of its location and that the facilitation persisted after the removal of the cue. Thus, the proximal olfactory cue appeared to potentiate learning and memory of the goal location relative to distant environmental cues. This facilitating effect was only detected when the expression of spatial memory was not already optimal, i.e., during the early phase of acquisition. It was not limited to a particular strain.
Resumo:
EI Salvador presents an unfortunate history that includes a military regime and a civil war that together created a legacy of violence in which the country still struggle nowadays. Salud Escolar Integral (SEI) was created in 2005 as a program to combat youth violence throughout the re-formulation of physical education (PE) classes in public schools, promoting life skills learning that supports the resolution of conflicts with nonviolent ways. In 2007, SEI supported the creation of a physical e~ucation teacher education (PETE) degree at the Universidad Pedag6gica de EI Salvador (UPES), having the goal to assist pre-service teachers with a better understanding of humanistic principles. The present research analyzed if after attending all three years ofUPES PETE program, students presented high self-perception levels of competence and confidence related to attitude, skills and knowledge to teach PE within humanistic principles. Taking Personal and Social Responsibility (TPSR) was the theoretical framework used to analyze the development of humanistic principles. The study had a mixed-method longitudinal design that included questionnaires, reflection templates and interviews. In conclusion, although it is suggested that UPES should provide better support for the development of the teaching principles of empowering students and transfer learning, most of the humanistic principles were highly promoted by the program. At last, it is suggested that future research should track teachers' progress while teaching in schools, in order to analyze if the theory of promoting humanistic principles have also become a daily practice.
Resumo:
The purpose of the present experiment was to determine whether learning is optimized when providing the opportunity to observe either segments, or the whole basketball jump shot. Participants performed 50 jump-shots from the free throw line during acquisition, and returned one day later for a 10 shot retention test and a memory recall test of the jump-shot technique. Shot accuracy was assessed on a 5-point scale and technique assessed on a 7-point scale. The number of components recalled correctly by participants assessed mental representation. Retention results showed superior shot technique and recall success for those participants provided control over the frequency and type of modelled information compared to participants not provided control. Furthermore, participants in the self-condition utilized the part-model information more frequently than whole-model information highlighting the effectiveness of providing the learner control over viewing multiple segments of a skill compared to only watching the whole model.
Resumo:
Learners can be provided with feedback in the form of knowledge of results (KR), under self-controlled and peer-controlled schedules. Recently, McRae, Hansen, and Patterson (2015), identified that inexperienced peers can provide KR that can facilitate motor skill acquisition. However, it is currently unknown whether previous task experience differentially impacts how peers present learners with KR and whether this KR impacts motor skill acquisition. In the present study, participants were randomly assigned to become inexperienced peer facilitators, learners with an inexperienced peer, learners with self-control who later became experienced peers, learners with an experienced peer, or learners in a control group. During acquisition learners completed a serial-timing task with a goal of 2500ms and returned approximately twenty four hours later for a delayed retention, time transfer, and pattern transfer test. We predicted that during the delayed tests, learners with self-control would outperform all other groups. Furthermore, we predicted that learners who received KR from experienced peers would outperform learners who received KR from inexperienced peers. However, our results indicated that participants who received peer-controlled and self-controlled KR schedules learned the task in an equivalent manner. Thus, our results are novel as they identify that inexperienced peers can provide KR that is as effective as KR provided by experienced peers and KR requested under self-controlled conditions.
Resumo:
L’observation d’un modèle pratiquant une habileté motrice promeut l’apprentissage de l’habileté en question. Toutefois, peu de chercheurs se sont attardés à étudier les caractéristiques d’un bon modèle et à mettre en évidence les conditions d’observation pouvant optimiser l’apprentissage. Dans les trois études composant cette thèse, nous avons examiné les effets du niveau d’habileté du modèle, de la latéralité du modèle, du point de vue auquel l’observateur est placé, et du mode de présentation de l’information sur l’apprentissage d’une tâche de timing séquentielle composée de quatre segments. Dans la première expérience de la première étude, les participants observaient soit un novice, soit un expert, soit un novice et un expert. Les résultats des tests de rétention et de transfert ont révélé que l’observation d’un novice était moins bénéfique pour l’apprentissage que le fait d’observer un expert ou une combinaison des deux (condition mixte). Par ailleurs, il semblerait que l’observation combinée de modèles novice et expert induise un mouvement plus stable et une meilleure généralisation du timing relatif imposé comparativement aux deux autres conditions. Dans la seconde expérience, nous voulions déterminer si un certain type de performance chez un novice (très variable, avec ou sans amélioration de la performance) dans l’observation d’une condition mixte amenait un meilleur apprentissage de la tâche. Aucune différence significative n’a été observée entre les différents types de modèle novices employés dans l’observation de la condition mixte. Ces résultats suggèrent qu’une observation mixte fournit une représentation précise de ce qu’il faut faire (modèle expert) et que l’apprentissage est d’autant plus amélioré lorsque l’apprenant peut contraster cela avec la performance de modèles ayant moins de succès. Dans notre seconde étude, des participants droitiers devaient observer un modèle à la première ou à la troisième personne. L’observation d’un modèle utilisant la même main préférentielle que soi induit un meilleur apprentissage de la tâche que l’observation d’un modèle dont la dominance latérale est opposée à la sienne, et ce, quel que soit l’angle d’observation. Ce résultat suggère que le réseau d’observation de l’action (AON) est plus sensible à la latéralité du modèle qu’à l’angle de vue de l’observateur. Ainsi, le réseau d’observation de l’action semble lié à des régions sensorimotrices du cerveau qui simulent la programmation motrice comme si le mouvement observé était réalisé par sa propre main dominante. Pour finir, dans la troisième étude, nous nous sommes intéressés à déterminer si le mode de présentation (en direct ou en vidéo) influait sur l’apprentissage par observation et si cet effet est modulé par le point de vue de l’observateur (première ou troisième personne). Pour cela, les participants observaient soit un modèle en direct soit une présentation vidéo du modèle et ceci avec une vue soit à la première soit à la troisième personne. Nos résultats ont révélé que l’observation ne diffère pas significativement selon le type de présentation utilisée ou le point de vue auquel l’observateur est placé. Ces résultats sont contraires aux prédictions découlant des études d’imagerie cérébrale ayant montré une activation plus importante du cortex sensorimoteur lors d’une observation en direct comparée à une observation vidéo et de la première personne comparée à la troisième personne. Dans l’ensemble, nos résultats indiquent que le niveau d’habileté du modèle et sa latéralité sont des déterminants importants de l’apprentissage par observation alors que le point de vue de l’observateur et le moyen de présentation n’ont pas d’effets significatifs sur l’apprentissage d’une tâche motrice. De plus, nos résultats suggèrent que la plus grande activation du réseau d’observation de l’action révélée par les études en imagerie mentale durant l’observation d’une action n’induit pas nécessairement un meilleur apprentissage de la tâche.
Resumo:
L’objectif de cette thèse par articles est de présenter modestement quelques étapes du parcours qui mènera (on espère) à une solution générale du problème de l’intelligence artificielle. Cette thèse contient quatre articles qui présentent chacun une différente nouvelle méthode d’inférence perceptive en utilisant l’apprentissage machine et, plus particulièrement, les réseaux neuronaux profonds. Chacun de ces documents met en évidence l’utilité de sa méthode proposée dans le cadre d’une tâche de vision par ordinateur. Ces méthodes sont applicables dans un contexte plus général, et dans certains cas elles on tété appliquées ailleurs, mais ceci ne sera pas abordé dans le contexte de cette de thèse. Dans le premier article, nous présentons deux nouveaux algorithmes d’inférence variationelle pour le modèle génératif d’images appelé codage parcimonieux “spike- and-slab” (CPSS). Ces méthodes d’inférence plus rapides nous permettent d’utiliser des modèles CPSS de tailles beaucoup plus grandes qu’auparavant. Nous démontrons qu’elles sont meilleures pour extraire des détecteur de caractéristiques quand très peu d’exemples étiquetés sont disponibles pour l’entraînement. Partant d’un modèle CPSS, nous construisons ensuite une architecture profonde, la machine de Boltzmann profonde partiellement dirigée (MBP-PD). Ce modèle a été conçu de manière à simplifier d’entraînement des machines de Boltzmann profondes qui nécessitent normalement une phase de pré-entraînement glouton pour chaque couche. Ce problème est réglé dans une certaine mesure, mais le coût d’inférence dans le nouveau modèle est relativement trop élevé pour permettre de l’utiliser de manière pratique. Dans le deuxième article, nous revenons au problème d’entraînement joint de machines de Boltzmann profondes. Cette fois, au lieu de changer de famille de modèles, nous introduisons un nouveau critère d’entraînement qui donne naissance aux machines de Boltzmann profondes à multiples prédictions (MBP-MP). Les MBP-MP sont entraînables en une seule étape et ont un meilleur taux de succès en classification que les MBP classiques. Elles s’entraînent aussi avec des méthodes variationelles standard au lieu de nécessiter un classificateur discriminant pour obtenir un bon taux de succès en classification. Par contre, un des inconvénients de tels modèles est leur incapacité de générer deséchantillons, mais ceci n’est pas trop grave puisque la performance de classification des machines de Boltzmann profondes n’est plus une priorité étant donné les dernières avancées en apprentissage supervisé. Malgré cela, les MBP-MP demeurent intéressantes parce qu’elles sont capable d’accomplir certaines tâches que des modèles purement supervisés ne peuvent pas faire, telles que celle de classifier des données incomplètes ou encore celle de combler intelligemment l’information manquante dans ces données incomplètes. Le travail présenté dans cette thèse s’est déroulé au milieu d’une période de transformations importantes du domaine de l’apprentissage à réseaux neuronaux profonds qui a été déclenchée par la découverte de l’algorithme de “dropout” par Geoffrey Hinton. Dropout rend possible un entraînement purement supervisé d’architectures de propagation unidirectionnel sans être exposé au danger de sur- entraînement. Le troisième article présenté dans cette thèse introduit une nouvelle fonction d’activation spécialement con ̧cue pour aller avec l’algorithme de Dropout. Cette fonction d’activation, appelée maxout, permet l’utilisation de aggrégation multi-canal dans un contexte d’apprentissage purement supervisé. Nous démontrons comment plusieurs tâches de reconnaissance d’objets sont mieux accomplies par l’utilisation de maxout. Pour terminer, sont présentons un vrai cas d’utilisation dans l’industrie pour la transcription d’adresses de maisons à plusieurs chiffres. En combinant maxout avec une nouvelle sorte de couche de sortie pour des réseaux neuronaux de convolution, nous démontrons qu’il est possible d’atteindre un taux de succès comparable à celui des humains sur un ensemble de données coriace constitué de photos prises par les voitures de Google. Ce système a été déployé avec succès chez Google pour lire environ cent million d’adresses de maisons.
Resumo:
We consider an online learning scenario in which the learner can make predictions on the basis of a fixed set of experts. The performance of each expert may change over time in a manner unknown to the learner. We formulate a class of universal learning algorithms for this problem by expressing them as simple Bayesian algorithms operating on models analogous to Hidden Markov Models (HMMs). We derive a new performance bound for such algorithms which is considerably simpler than existing bounds. The bound provides the basis for learning the rate at which the identity of the optimal expert switches over time. We find an analytic expression for the a priori resolution at which we need to learn the rate parameter. We extend our scalar switching-rate result to models of the switching-rate that are governed by a matrix of parameters, i.e. arbitrary homogeneous HMMs. We apply and examine our algorithm in the context of the problem of energy management in wireless networks. We analyze the new results in the framework of Information Theory.
Resumo:
The purpose of this paper is to propose a Neural-Q_learning approach designed for online learning of simple and reactive robot behaviors. In this approach, the Q_function is generalized by a multi-layer neural network allowing the use of continuous states and actions. The algorithm uses a database of the most recent learning samples to accelerate and guarantee the convergence. Each Neural-Q_learning function represents an independent, reactive and adaptive behavior which maps sensorial states to robot control actions. A group of these behaviors constitutes a reactive control scheme designed to fulfill simple missions. The paper centers on the description of the Neural-Q_learning based behaviors showing their performance with an underwater robot in a target following task. Real experiments demonstrate the convergence and stability of the learning system, pointing out its suitability for online robot learning. Advantages and limitations are discussed
Resumo:
The use of biofeedback in the spinal cord injuryperson rehabilitation has been increasing eventhough there are no data about the effi cacy of suchtechnique. The study aimed to evaluate the effi cacyof the technique in the motor rehabilitation ofspinal cord injured patients with different lesions.Using case studies, three participants, two paraplegicsand one quadriplegic, with different lesionlevels and degrees of defi ciency were exposed toelectromyography biofeedback training sessions.Data were obtained from the training sessions withbiofeedback, from three manual test examinationsof the muscles straight and from the reports of theparticipants after the training process. These sourcesof data were compared and the results of all thethree different sources showed improvement forall the participants. The study concluded that theelectromyography biofeedback technique can bean important tool in the rehabilitation process ofpatients with this kind of lesion.