882 resultados para Layered stannosilicates
Resumo:
Bismuth titanatc-Bi(4)Ti(3)O(12) (BIT) with wide application in the electronic industry as capacitors, memory devices and sensors is the simplest compound in the Aurivillius family, which consists of (Bi(2)O(2))(2+) sheets alternating with (Bi(2)T(i)3O(10))(2-) perovskite-like layers. The synthesis of more resistive BIT ceramics would be preferable advance in obtaining of well-densified ceramic with small grains randomly oriented to limit the conductivity along the (Bi(2)O(2))(2+) layers. Having in mind that the conventional ceramic route for the synthesis can lead to non-stoichiometry in composition, in consequence of the undesirable loss in bismuth content through volatilization of Bi(2)O(3) at elevated temperature, our efforts were addressed to preparation of BIT by mechanical activation the constituent oxides. The nucleation and phase formation of BIT, crystal structure, microstructure, powder particle size and specific surface area were followed by XRD, Rietveld refinement analysis, thermal analysis, scanning electron microscopy (SEM) and the BET specific surface area measurements. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The two-dimensional hybrid organic-inorganic materials Zn-2-Cr and Zn-2-Al-LDHs (Layered Double Hydroxides) containing 4-(1H-pyrrol-1yl)benzoate anions as the interlayer anions were synthesized by the co-precipitation method at constant pH followed by subsequent hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, ESR, TGA, and TEM. The basal spacing found by the X-ray diffraction technique is coincident with the formation of bilayers of the intercalated anions. Solid-state C-13 NMR and ESR data strongly suggest the partial in situ polymerization of the 4-(1H-pyrrol-1yl)benzoate anions during coprecipitation. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The authors investigated the influence of defects on the piezoelectric and dielectric properties of Bi4Ti3O12 (BIT), SrBi4Ti4O15 (SBTi) and CaBi4Ti4O15 (CBTi144) thin films by x-ray photoemission spectroscopy measurements. In the SBTi film, Sr which is a nonpolarizable ion restricting the movement of Ti4+ ions and thus leads to a low piezoresponse. Meanwhile, the oxygen environment is quite different in the BIT and CBTi144 films exhibiting excellent piezoelectric properties. The piezoelectric coefficient and the dielectric behavior were larger for a-b axis oriented than for c axis-oriented films due to the defects created during the films crystallization. (c) 2007 American Institute of Physics.
Resumo:
A structural study of the thermal evolution of Ni0.69Cr0.31(OH)(2)(CO3)(0.155)(.)nH(2)O into NiO and tetragonal NiCr2O4 is reported. The characteristic structural parameters of the two coexisting crystalline phases, as well as their relative abundance, were determined by Rietveld refinement of powder x-ray diffraction (PXRD) patterns. The results of the simulations allowed us to elucidate the mechanism of the demixing process of the oxides. It is demonstrated that nucleation of a metastable nickel chromite within the common oxygen framework of the parent Cr-III-doped bunsenite is the initial step of the cationic redistribution. The role that trivalent cations play in the segregation of crystalline spinels is also discussed.
Resumo:
We report the synthesis and characterization of organic-inorganic hybrid materials: Zn-2-Al-LDHs (layered double hydroxides) containing 3-(1H-pyrrol-1-yl)-propanoate and 7-(1H-pyrrol-l-yl)-heptanoate as the interlayer anions. The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, TGA, and ESR. The basal spacing found by PXRD technique is coincident with the formation of bilayers of the intercalated anions. The solid state C-13 NMR showed that the interlayered anions remain identical after intercalation. ESR data suggest that the monomers connect each other in a limited number of guests when a thermal treatment is applied. The inorganic LDH sheets delay the temperature of degradation of the monomers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The mafic/ultramafic Ipanema Layered Complex (ILC), Minas Gerais Brazil, consists of seven individual bodies. These units crosscut polyphase orthogneisses and interlayered paragneisses of the Paleoproterozoic Juiz de Fora Complex. Intrusive granitoids tectonically related to [lie Neoproterozoie Aracuai orogen are also present in the study area.A Sm-Nd whole-rock linear array for seven samples metapyoxenites, metaperidotiles, metagabbro. and meta-anorthosite) from the Santa Cruz massif, the largest body of the ILC. suggest that it was emplaced at 1104 +/- 78 Ma the original magma was derived from a depleted mantle source (epsilon(Ndt)= +3.8). U-Pb single-grain zircon stud of a meta-anorthosite yields all upper intercept age of 1719 +/- 4 Ma, which is interpreted to represent inheritance. The lower intercept at 630+/-3 Ma indicates (hat a Neoproterozoic tectonothermal episode overprinted the ILC, this event occurred under upper-amphiolite-, to granulite-facies conditions. The 630 Ma episode is consistent with the timing of regional metamorphism and deformation of the adjacent Aracuai orogen (Brasiliano collage). Emplacement of the ILC and other coeval metamafies and meta-ultramafics (of alkaline affinity) in the re, oil is attributed to early extension tectonics, accompanying accretion of the Rodinia super- continent during the Mesoproterozoic-Neoproterozoic time boundary.
Resumo:
We have pointed out that zinc based particles obtained from ethanolic solution of a zinc acetate derivative (zinc oxy-acetate, Zn4O(Ac)(6)) are a mixture of nanometer sized ZnO, zinc oxy-acetate, and zinc hydroxide double salt (Zn-HDS). The knowledge of the mechanisms involved in the formation of ZnO and Zn-HDS phases, and the evolution of Zn species in reaction medium was monitored in situ during 14 h by simultaneous measurements of UV-vis absorption and extended X-ray absorption fine structures (EXAFS) spectra. This spectroscopic monitoring was initialized just after the addition of an ethanolic lithium hydroxide solution ([LiOH]/[Zn] = 0. 1) to the reaction medium kept under controlled temperature (40 degrees C). This study points out the first direct evidence of the reaction between ZnO nanoparticles and unreacted zinc oxy-acetate to form a Zn-HDS phase. The dissolution of ZnO and the reprecipitation of Zn-HDS are induced by the gradual release of water mainly produced by ethanol esterification well evidenced by gas chromatography coupled to mass spectroscopy and FT-IR measurements.
Resumo:
The polymeric precursor method was used to prepare multi-layered LiNbO3 films. The overall process consists of preparing a coating solution from the Pechini process and the deposited film is subsequently heat-treated. Two-layered films were prepared by this process, onto (0001) sapphire substrates. Two different routes were investigated for the heat-treatment. The amorphous route consisted of performing, after each deposition, a pre-treatment at low temperature to eliminate the organic material. In this case, the crystallization heat-treatment was performed only after the two layers had been deposited. on the other hand, a process layer-after-layer crystallization was used. Both routes led to (0001) LiNbO3 oriented films. However, only the film prepared by the layer-after-layer crystallization presented an epitaxial growth and a crack-free morphology. Moreover, the layer-after-layer crystallization process led to a film exhibiting the best optical properties. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The synthesis, characterization, and electrochemical study of the Zn(II)-Al(III) and Zn(II)-Cr(III) Layered Double Hydroxides (LDHs) containing 2-thiopenecarboxylate as the interlayer anions are described. The LDHs were prepared by the constant pH coprecipitation technique followed by hydrothermal treatment for 72 h. The materials were analyzed by PXRD, FT-IR, C-13 CP-MAS, EDX, TEM, and CV. The presence of the organic heterocyclic anions was confirmed by FT-IR and the related solid-state C-13 NMR data strongly suggested that these were dimerised during coprecipitation. Accordingly, the basal spacing found by the X-ray technique was similar to 15.3 Angstrom, a distance coincident with the formation of bilayers of the intercalated anions. The structural organization of all the new materials was greatly enhanced by hydrothermal treatment, as shown by PXRD. The improved organization of the bilayered structures had a strong influence in the electrochemical behaviour of clay-modified electrodes produced with these materials, such as the diminished resistance to the ionic flow through the LDHs films. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In the present work we study an anisotropic layered superconducting film of finite thickness. The film surfaces are considered parallel to the be face of the crystal. The vortex lines are oriented perpendicular to the film surfaces and parallel to the superconducting planes. We calculate the local field and the London free energy for this geometry. Our calculation is a generalization of previous works where the sample is taken as a semi-infinite superconductor. As an application of this theory we investigate the flux spreading at the super conducting surface.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We write the London limit of the Lawrence Doniach free energy in terms of the local magnetic field and of the average supercurrent over the interplane distance. Starting from this formulation we study a model where the supercurrent at the buffer layers is obtained from the superconducting sheets by a Taylor expansion. The continuum limit of this model gives corrections to the anisotropic London theory due to the layered structure.
Resumo:
We are developing two-layered Yttrium Barium Copper Oxide (YBCO) thin film structures for energy efficient data links for superconducting electronics and present the results of their property measurements. High temperature superconductors (HTS) are advantageous for the implementation of energy-efficient cables interconnecting low temperature superconductor-based circuits and other cryogenic electronics circuits at higher temperature stages. The advantages of the HTS cables come from their low loss and low dispersion properties, allowing ballistic transfer of low power signals with very high bandwidth, low heat conduction and negligible inter-line crosstalk. The microstrip line cable geometry for typical materials is a two-layered film, in which the two superconducting layers are separated by an insulation layer with a minimized permittivity. We have made a proof of concept design of two YBCO films grown by pulsed laser deposition and then assembled into a sandwich with uniform insulating interlayer of tens of micrometers thick. We report on results obtained from such systems assembled in different ways. Structural and electromagnetic properties have been examined on individual films and on the corresponding sandwich composite. © 2013 IEEE.