908 resultados para Law of Arbitration: article 32


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The longitudinal fluctuating velocity of a turbulent boundary layer was measured in a water channel at a moderate Reynolds number. The extended self-similar scaling law of structure function proposed by Benzi was verified. The longitudinal fluctuating velocity, in the turbulent boundary layer was decomposed into many multi-scale eddy structures by wavelet transform. The extended self-similar scaling law of structure function for each scale eddy velocity was investigated. The conclusions are I) The statistical properties of turbulence could be self-similar not only at high Reynolds number, but also at moderate and low Reynolds number, and they could be characterized by the same set of scaling exponents xi (1)(n) = n/3 and xi (2)(n) = n/3 of the fully developed regime. 2) The range of scales where the extended self-similarity valid is much larger than the inertial range and extends far deep into the dissipation range,vith the same set of scaling exponents. 3) The extended selfsimilarity is applicable not only for homogeneous turbulence, but also for shear turbulence such as turbulent boundary layers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

From observed data on lithospheric plates, a unified empirical law for plate motion,valid for continental as well as oceanic plates, is obtained in the following form: The speedof plate motion U depends linearly on a geometric parameter T_d, ratio of the sum of effectiveridge length and trench arc length to the sum of area of continental part of plate and total areaof cold sinking slab. Based on this unified law, a simple mechanical analysis shows that, themain driving forces for lithospheric plates come from push along the mid-ocean ridge andpull by the cold sinking slab, while the main drag forces consist of the viscous traction beneaththe continental part of plate and over both faces of the sinking slab. Moreover, the specific-push along ridge and pull by slab are found to be of equal magnitude.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By means of the numerical solution of time-dependant Schrodinger equation, we verify a scaling law of photoionization in ultrashort pulses. We find that for a given carrier-envelope phase and duration of the pulse, identical photoionizations are obtained provided that when the central frequency of the pulse is enlarged by k times, the atomic binding potential is enlarged by k times, and the laser intensity is enlarged by k(3) times. The scaling law allows us to reach a significant control over direction of photoemission and offers exciting prospects of reaching similar physical processes in different interacting systems which constitutes a novel kind of coherent control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoelectron angular distributions (PADs) from above-threshold ionization of atoms irradiated by one-cycle laser pulses satisfy a scaling law. The scaling law denotes that the main features of the PADs are determined by four dimensionless parameters: (1) the ponderomotive number u(p) = U-p/hw, the ponderomotive energy U-p in units of laser photon energy; (2) the binding number E-b = E-b/h(w), the atomic binding energy E-b in units of laser photon energy; (3) the number of absorbed photons q; (4) the carrier-envelope phase phi(0), the phase of the carrier wave with respect to the envelope. We verify the scaling law by theoretical analysis and numerical calculation, compared to that in long-pulse case. A possible experimental test to verify the scaling law is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a scaling law of photoionization of atoms irradiated by intense, few- cycle laser pulses is established. The scaling law sets a relation to the phase- dependent ionization with the kinetic energy of photoelectrons, the duration and peak intensity of short pulses, and the ionization potential of the target atoms. We find that it will be advantageous to manifest the phase- dependent photoionization by choosing the target atoms with larger ionization potential, using laser with smaller carrier- frequency, and increasing the pulse intensity. (c) 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador: