991 resultados para Lattice-based cryptosystems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the dynamical properties of the RZ-DPSK encoded sequences, focusing on the instabilities in the soliton train leading to the distortions of the information transmitted. The problem is reformulated within the framework of complex Toda chain model which allows one to carry out the simplified description of the optical soliton dynamics. We elucidate how the bit composition of the pattern affects the initial (linear) stage of the train dynamics and explain the general mechanisms of the appearance of unstable collective soliton modes. Then we discuss the nonlinear regime using asymptotic properties of the pulse stream at large propagation distances and analyze the dynamical behavior of the train classifying different scenarios for the pattern instabilities. Both approaches are based on the machinery of Hermitian and non-Hermitian lattice analysis. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper strontium-site-deficient Sr2Fe1.4Co0.1Mo0.5O6-δ-based perovskite oxides (SxFCM) were prepared and evaluated as the cathode materials for intermediate temperature solid oxide fuel cells (IT-SOFCs). All samples exhibited a cubic phase structure and the lattice shrinked with increasing the Sr-deficiency as shown in XRD patterns. XPS results determined that the transition elements (Co/Fe/Mo) in SxFCM oxides were in a mixed valence state, demonstrating the small polaron hopping conductivity mechanism existed. Among the samples, S1.950FCM presented the lowest coefficient of thermal expansion of 15.62 × 10-6 K-1, the highest conductivity value of 28 S cm-1 at 500 °C, and the lowest interfacial polarization resistance of 0.093 Ω cm2 at 800 °C, respectively. Furthermore, an anode-supported single cell with a S1.950FCM cathode was prepared, demonstrating a maximum power density of 1.16 W cm-2 at 800 °C by using wet H2 (3% H2O) as the fuel and ambient air as the oxidant. These results indicate that the introduction of Sr-deficiency can dramatically improve the electrochemical performance of Sr2Fe1.4Co0.1Mo0.5O6-δ, showing great promise as a novel cathode candidate material for IT-SOFCs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this study is to better simulate microscopic and voxel-based dynamic contrast enhancement in magnetic resonance imaging. Specifically, errors imposed by the traditional two-compartment model are reduced by introducing a novel Krogh cylinder network. The two-compartment model was developed for macroscopic pharmacokinetic analysis of dynamic contrast enhancement and generalizing it to voxel dimensions, due to the significant decrease in scale, imposes physiologically unrealistic assumptions. In the project, a system of microscopic exchange between plasma and extravascular-extracellular space is built while numerically simulating the local contrast agent flow between and inside image elements. To do this, tissue parameter maps were created, contrast agent was introduced to the tissue via a flow lattice, and various data sets were simulated. The effects of sources, tissue heterogeneity, and the contribution of individual tissue parameters to an image are modeled. Further, the study attempts to demonstrate the effects of a priori flow maps on image contrast, indicating that flow data is as important as permeability data when analyzing tumor contrast enhancement. In addition, the simulations indicate that it may be possible to obtain tumor-type diagnostic information by acquiring both flow and permeability data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a eduction to a cubic nonlinear Schr{\"o}dinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher-order analysis yielding a generalised NLS, which includes known stabilising terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, symptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximised for stationary breathers, and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt \& Wattis, {\em J Phys A}, {\bf 39}, 4955, (2006)), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalised NLS equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single-cell functional proteomics assays can connect genomic information to biological function through quantitative and multiplex protein measurements. Tools for single-cell proteomics have developed rapidly over the past 5 years and are providing unique opportunities. This thesis describes an emerging microfluidics-based toolkit for single cell functional proteomics, focusing on the development of the single cell barcode chips (SCBCs) with applications in fundamental and translational cancer research.

The microchip designed to simultaneously quantify a panel of secreted, cytoplasmic and membrane proteins from single cells will be discussed at the beginning, which is the prototype for subsequent proteomic microchips with more sophisticated design in preclinical cancer research or clinical applications. The SCBCs are a highly versatile and information rich tool for single-cell functional proteomics. They are based upon isolating individual cells, or defined number of cells, within microchambers, each of which is equipped with a large antibody microarray (the barcode), with between a few hundred to ten thousand microchambers included within a single microchip. Functional proteomics assays at single-cell resolution yield unique pieces of information that significantly shape the way of thinking on cancer research. An in-depth discussion about analysis and interpretation of the unique information such as functional protein fluctuations and protein-protein correlative interactions will follow.

The SCBC is a powerful tool to resolve the functional heterogeneity of cancer cells. It has the capacity to extract a comprehensive picture of the signal transduction network from single tumor cells and thus provides insight into the effect of targeted therapies on protein signaling networks. We will demonstrate this point through applying the SCBCs to investigate three isogenic cell lines of glioblastoma multiforme (GBM).

The cancer cell population is highly heterogeneous with high-amplitude fluctuation at the single cell level, which in turn grants the robustness of the entire population. The concept that a stable population existing in the presence of random fluctuations is reminiscent of many physical systems that are successfully understood using statistical physics. Thus, tools derived from that field can probably be applied to using fluctuations to determine the nature of signaling networks. In the second part of the thesis, we will focus on such a case to use thermodynamics-motivated principles to understand cancer cell hypoxia, where single cell proteomics assays coupled with a quantitative version of Le Chatelier's principle derived from statistical mechanics yield detailed and surprising predictions, which were found to be correct in both cell line and primary tumor model.

The third part of the thesis demonstrates the application of this technology in the preclinical cancer research to study the GBM cancer cell resistance to molecular targeted therapy. Physical approaches to anticipate therapy resistance and to identify effective therapy combinations will be discussed in detail. Our approach is based upon elucidating the signaling coordination within the phosphoprotein signaling pathways that are hyperactivated in human GBMs, and interrogating how that coordination responds to the perturbation of targeted inhibitor. Strongly coupled protein-protein interactions constitute most signaling cascades. A physical analogy of such a system is the strongly coupled atom-atom interactions in a crystal lattice. Similar to decomposing the atomic interactions into a series of independent normal vibrational modes, a simplified picture of signaling network coordination can also be achieved by diagonalizing protein-protein correlation or covariance matrices to decompose the pairwise correlative interactions into a set of distinct linear combinations of signaling proteins (i.e. independent signaling modes). By doing so, two independent signaling modes – one associated with mTOR signaling and a second associated with ERK/Src signaling have been resolved, which in turn allow us to anticipate resistance, and to design combination therapies that are effective, as well as identify those therapies and therapy combinations that will be ineffective. We validated our predictions in mouse tumor models and all predictions were borne out.

In the last part, some preliminary results about the clinical translation of single-cell proteomics chips will be presented. The successful demonstration of our work on human-derived xenografts provides the rationale to extend our current work into the clinic. It will enable us to interrogate GBM tumor samples in a way that could potentially yield a straightforward, rapid interpretation so that we can give therapeutic guidance to the attending physicians within a clinical relevant time scale. The technical challenges of the clinical translation will be presented and our solutions to address the challenges will be discussed as well. A clinical case study will then follow, where some preliminary data collected from a pediatric GBM patient bearing an EGFR amplified tumor will be presented to demonstrate the general protocol and the workflow of the proposed clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Additive Manufacturing (AM) is nowadays considered an important alternative to traditional manufacturing processes. AM technology shows several advantages in literature as design flexibility, and its use increases in automotive, aerospace and biomedical applications. As a systematic literature review suggests, AM is sometimes coupled with voxelization, mainly for representation and simulation purposes. Voxelization can be defined as a volumetric representation technique based on the model’s discretization with hexahedral elements, as occurs with pixels in the 2D image. Voxels are used to simplify geometric representation, store intricated details of the interior and speed-up geometric and algebraic manipulation. Compared to boundary representation used in common CAD software, voxel’s inherent advantages are magnified in specific applications such as lattice or topologically structures for visualization or simulation purposes. Those structures can only be manufactured with AM employment due to their complex topology. After an accurate review of the existent literature, this project aims to exploit the potential of the voxelization algorithm to develop optimized Design for Additive Manufacturing (DfAM) tools. The final aim is to manipulate and support mechanical simulations of lightweight and optimized structures that should be ready to be manufactured with AM with particular attention to automotive applications. A voxel-based methodology is developed for efficient structural simulation of lattice structures. Moreover, thanks to an optimized smoothing algorithm specific for voxel-based geometries, a topological optimized and voxelized structure can be transformed into a surface triangulated mesh file ready for the AM process. Moreover, a modified panel code is developed for simple CFD simulations using the voxels as a discretization unit to understand the fluid-dynamics performances of industrial components for preliminary aerodynamic performance evaluation. The developed design tools and methodologies perfectly fit the automotive industry’s needs to accelerate and increase the efficiency of the design workflow from the conceptual idea to the final product.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present manuscript focuses on Lattice Gauge Theories based on finite groups. For the purpose of Quantum Simulation, the Hamiltonian approach is considered, while the finite group serves as a discretization scheme for the degrees of freedom of the gauge fields. Several aspects of these models are studied. First, we investigate dualities in Abelian models with a restricted geometry, using a systematic approach. This leads to a rich phase diagram dependent on the super-selection sectors. Second, we construct a family of lattice Hamiltonians for gauge theories with a finite group, either Abelian or non-Abelian. We show that is possible to express the electric term as a natural graph Laplacian, and that the physical Hilbert space can be explicitly built using spin network states. In both cases we perform numerical simulations in order to establish the correctness of the theoretical results and further investigate the models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the user scheduling problem in a Low Earth Orbit (LEO) Multi-User MIMO system is the objective of this thesis. With the application of cutting-edge digital beamforming algorithms, a LEO satellite with an antenna array and a large number of antenna elements can provide service to many user terminals (UTs) in full frequency reuse (FFR) schemes. Since the number of UTs on-ground are many more than the transmit antennas on the satellite, user scheduling is necessary. Scheduling can be accomplished by grouping users into different clusters: users within the same cluster are multiplexed and served together via Space Division Multiple Access (SDMA), i.e., digital beamforming or Multi-User MIMO techniques; the different clusters of users are then served on different time slots via Time Division Multiple Access (TDMA). The design of an optimal user grouping strategy is known to be an NP-complete problem which can be solved only through exhaustive search. In this thesis, we provide a graph-based user scheduling and feed space beamforming architecture for the downlink with the aim of reducing user inter-beam interference. The main idea is based on clustering users whose pairwise great-circle distance is as large as possible. First, we create a graph where the users represent the vertices, whereas an edge in the graph between 2 users exists if their great-circle distance is above a certain threshold. In the second step, we develop a low complex greedy user clustering technique and we iteratively search for the maximum clique in the graph, i.e., the largest fully connected subgraph in the graph. Finally, by using the 3 aforementioned power normalization techniques, a Minimum Mean Square Error (MMSE) beamforming matrix is deployed on a cluster basis. The suggested scheduling system is compared with a position-based scheduler, which generates a beam lattice on the ground and randomly selects one user per beam to form a cluster.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the various ways of adopting the biographical approach, we used the curriculum vitaes (CVs) of Brazilian researchers who work as social scientists in health as our research material. These CVs are part of the Lattes Platform of CNPq - the National Council for Scientific and Technological Development, which includes Research and Institutional Directories. We analyzed 238 CVs for this study. The CVs contain, among other things, the following information: professional qualifications, activities and projects, academic production, participation in panels for the evaluation of theses and dissertations, research centers and laboratories and a summarized autobiography. In this work there is a brief review of the importance of autobiography for the social sciences, emphasizing the CV as a form of autobiographical practice. We highlight some results, such as it being a group consisting predominantly of women, graduates in social sciences, anthropology, sociology or political science, with postgraduate degrees. The highest concentration of social scientists is located in Brazil's southern and southeastern regions. In some institutions the main activities of social scientists are as teachers and researchers with great thematic diversity in research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ochnaceae s.str. (Malpighiales) are a pantropical family of about 500 species and 27 genera of almost exclusively woody plants. Infrafamilial classification and relationships have been controversial partially due to the lack of a robust phylogenetic framework. Including all genera except Indosinia and Perissocarpa and DNA sequence data for five DNA regions (ITS, matK, ndhF, rbcL, trnL-F), we provide for the first time a nearly complete molecular phylogenetic analysis of Ochnaceae s.l. resolving most of the phylogenetic backbone of the family. Based on this, we present a new classification of Ochnaceae s.l., with Medusagynoideae and Quiinoideae included as subfamilies and the former subfamilies Ochnoideae and Sauvagesioideae recognized at the rank of tribe. Our data support a monophyletic Ochneae, but Sauvagesieae in the traditional circumscription is paraphyletic because Testulea emerges as sister to the rest of Ochnoideae, and the next clade shows Luxemburgia+Philacra as sister group to the remaining Ochnoideae. To avoid paraphyly, we classify Luxemburgieae and Testuleeae as new tribes. The African genus Lophira, which has switched between subfamilies (here tribes) in past classifications, emerges as sister to all other Ochneae. Thus, endosperm-free seeds and ovules with partly to completely united integuments (resulting in an apparently single integument) are characters that unite all members of that tribe. The relationships within its largest clade, Ochnineae (former Ochneae), are poorly resolved, but former Ochninae (Brackenridgea, Ochna) are polyphyletic. Within Sauvagesieae, the genus Sauvagesia in its broad circumscription is polyphyletic as Sauvagesia serrata is sister to a clade of Adenarake, Sauvagesia spp., and three other genera. Within Quiinoideae, in contrast to former phylogenetic hypotheses, Lacunaria and Touroulia form a clade that is sister to Quiina. Bayesian ancestral state reconstructions showed that zygomorphic flowers with adaptations to buzz-pollination (poricidal anthers), a syncarpous gynoecium (a near-apocarpous gynoecium evolved independently in Quiinoideae and Ochninae), numerous ovules, septicidal capsules, and winged seeds with endosperm are the ancestral condition in Ochnoideae. Although in some lineages poricidal anthers were lost secondarily, the evolution of poricidal superstructures secured the maintenance of buzz-pollination in some of these genera, indicating a strong selective pressure on keeping that specialized pollination system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new social panorama resulting from aging of the Brazilian population is leading to significant transformations within healthcare. Through the cluster analysis strategy, it was sought to describe the specific care demands of the elderly population, using frailty components. Cross-sectional study based on reviewing medical records, conducted in the geriatric outpatient clinic, Hospital de Clínicas, Universidade Estadual de Campinas (Unicamp). Ninety-eight elderly users of this clinic were evaluated using cluster analysis and instruments for assessing their overall geriatric status and frailty characteristics. The variables that most strongly influenced the formation of clusters were age, functional capacities, cognitive capacity, presence of comorbidities and number of medications used. Three main groups of elderly people could be identified: one with good cognitive and functional performance but with high prevalence of comorbidities (mean age 77.9 years, cognitive impairment in 28.6% and mean of 7.4 comorbidities); a second with more advanced age, greater cognitive impairment and greater dependence (mean age 88.5 years old, cognitive impairment in 84.6% and mean of 7.1 comorbidities); and a third younger group with poor cognitive performance and greater number of comorbidities but functionally independent (mean age 78.5 years old, cognitive impairment in 89.6% and mean of 7.4 comorbidities). These data characterize the profile of this population and can be used as the basis for developing efficient strategies aimed at diminishing functional dependence, poor self-rated health and impaired quality of life.