994 resultados para Lattice dynamics
Resumo:
The particle transfer molecular dynamics is used to study the phase equilibria of linear and branched chain molecules. The scaling of the critical temperature versus chain length is obtained and the critical densities are found to decrease with increasing chain length, which are in agreement with the results of experiment and theory. The phase diagrams of the linear and the branched chain molecules nearly overlap with each other. Moreover, the radial distribution functions of linear and branched chain molecules in gas phase are very similar, but in the liquid phase, they are different for different kinds of chains.
Resumo:
Effects of chain flexibility on the conformation of homopolymers in good solvents have been investigated by Monte Carlo simulation. Bond angle constraint coupled with persistence length of polymer chains has been introduced in the modified eight-site bond fluctuation simulation model. The study about the effects of chain flexibility on polymer sizes reveals that the orientation of polymer chains under confinement is driven by the loss of conformation entropy. The conformation of polymer chains undergoing a gradual change from spherical iso-diametric ellipsoid to rodlike iso-diametric ellipsoid with the decrease of polymer chain flexibility in a wide region has been clearly illustrated from several aspects. Furthermore, a comparison of the freely jointed chain (FJC) model and the wormlike chain (WLC) model has also been made to describe the polymer sizes in terms of chain flexibility and quasi-quantitative boundary toward the suitability of the models.
Resumo:
Local main chain dynamics of dissolved phenolphthalein polyethersulfone (PES-C) in solution with chloroform-d(1) were examined through C-13 NMR relaxation measurements. Spin-lattice relaxation times and NOE (nuclear Overhauser effects) factors were measured as a function of temperature. The relaxation data were interpreted in terms of main chain segmental motion by using the damped orientational diffusion model (DAMP) and the conformation jump model (VJGM) derived by Valeur, Jarry, Geny, and Monnerie. The simulation method used is N-SIMPLEX, which gives, in this study, a result of the object function less than 10(-4). Correlation times were obtained for the main chain motion of PES-C with these models and the results indicate that the main chain of PES-C are flexible. The comparison between PES-C and 1,2-polybutadiene is proposed. The distribution of the correlation time for the main chain motion by using VJGM model is discussed. The temperature dependence of correlation times for PES-C indicating the dynamical rigidity of its chains is obtained.
Resumo:
An effective approach of simulating fluid dynamics on a cluster of non- dedicated workstations is presented. The approach uses local interaction algorithms, small communication capacity, and automatic migration of parallel processes from busy hosts to free hosts. The approach is well- suited for simulating subsonic flow problems which involve both hydrodynamics and acoustic waves; for example, the flow of air inside wind musical instruments. Typical simulations achieve $80\\%$ parallel efficiency (speedup/processors) using 20 HP-Apollo workstations. Detailed measurements of the parallel efficiency of 2D and 3D simulations are presented, and a theoretical model of efficiency is developed which fits closely the measurements. Two numerical methods of fluid dynamics are tested: explicit finite differences, and the lattice Boltzmann method.
Resumo:
Molecular dynamics has been employed to model the fracture of a twodimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.
Resumo:
Molecular dynamics has been employed to model the fracture of a two dimensional triangular atomic lattice. The N-body Sutton-Chen potential developed for fcc metals and its extended version (Rafii-Tabar and Sutton) for fcc random binary alloys were used for the interatomic interactions. It is shown that at low temperatures cleavage fractures can occur in both an elemental metal and an alloy. At elevated temperatures the nucleation of dislocations is shown to cause a brittle-to-ductile transition. For the brittle crack propagation in the elemental metal, crack propagation speeds have been computed for different stress rates, and a crack instability found to exist as the speed reaches a critical value of about 32% of the Rayleigh wave speed. For the random alloy, we find that the dislocation movement can be affected by the distorted lattice.
Resumo:
The nonlinear dynamics of longitudinal dust lattice waves propagating in a dusty plasma bi-crystal is investigated. A “diatomic”-like one-dimensional dust lattice configuration is considered, consisting of two distinct dust grain species with different charges and masses. Two different frequency dispersion modes are obtained in the linear limit, namely, an optical and an acoustic wave dispersion branch. Nonlinear solitary wave solutions are shown to exist in both branches, by considering the continuum limit for lattice excitations in different nonlinear potential regimes. For this purpose, a generalized Boussinesq and an extended Korteweg de Vries equation is derived, for the acoustic mode excitations, and their exact soliton solutions are provided and compared. For the optic mode, a nonlinear Schrödinger-type equation is obtained, which is shown to possess bright- (dark-) type envelope soliton solutions in the long (short, respectively) wavelength range. Optic-type longitudinal wavepackets are shown to be generally unstable in the continuum limit, though this is shown not to be the rule in the general (discrete) case.
Resumo:
We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schrodinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-lattice-site contours in the form of both discrete multipole solitons and discrete vortices. Additionally to identifying the possible states, we analytically track their linear stability both qualitatively and quantitatively. We find that among the six-site configurations, the
Resumo:
This paper presents a social simulation in which we add an additional layer of mass media communication to the social network 'bounded confidence' model of Deffuant et al (2000). A population of agents on a lattice with continuous opinions and bounded confidence adjust their opinions on the basis of binary social network interactions between neighbours or communication with a fixed opinion. There are two mechanisms for interaction. 'Social interaction' occurs between neighbours on a lattice and 'mass communication' adjusts opinions based on an agent interacting with a fixed opinion. Two new variables are added, polarisation: the degree to which two mass media opinions differ, and broadcast ratio: the number of social interactions for each mass media communication. Four dynamical regimes are observed, fragmented, double extreme convergence, a state of persistent opinion exchange leading to single extreme convergence and a disordered state. Double extreme convergence is found where agents are less willing to change opinion and mass media communications are common or where there is moderate willingness to change opinion and a high frequency of mass media communications. Single extreme convergence is found where there is moderate willingness to change opinion and a lower frequency of mass media communication. A period of persistent opinion exchange precedes single extreme convergence, it is characterized by the formation of two opposing groups of opinion separated by a gradient of opinion exchange. With even very low frequencies of mass media communications this results in a move to central opinions followed by a global drift to one extreme as one of the opposing groups of opinion dominates. A similar pattern of findings is observed for Neumann and Moore neighbourhoods.
Resumo:
A numerical study is presented of the third-dimensional Gaussian random-field Ising model at T=0 driven by an external field. Standard synchronous relaxation dynamics is employed to obtain the magnetization versus field hysteresis loops. The focus is on the analysis of the number and size distribution of the magnetization avalanches. They are classified as being nonspanning, one-dimensional-spanning, two-dimensional-spanning, or three-dimensional-spanning depending on whether or not they span the whole lattice in different space directions. Moreover, finite-size scaling analysis enables identification of two different types of nonspanning avalanches (critical and noncritical) and two different types of three-dimensional-spanning avalanches (critical and subcritical), whose numbers increase with L as a power law with different exponents. We conclude by giving a scenario for avalanche behavior in the thermodynamic limit.
Resumo:
The influence of vacancy concentration on the behavior of the three-dimensional random field Ising model with metastable dynamics is studied. We have focused our analysis on the number of spanning avalanches which allows us a clear determination of the critical line where the hysteresis loops change from continuous to discontinuous. By a detailed finite-size scaling analysis we determine the phase diagram and numerically estimate the critical exponents along the whole critical line. Finally, we discuss the origin of the curvature of the critical line at high vacancy concentration.
Resumo:
We have calculated the concentrations of Mg in the bulk and surfaces of aragonite CaCO3 in equilibrium with aqueous solution, based on molecular dynamics simulations and grand-canonical statistical mechanics. Mg is incorporated in the surfaces, in particular in the (001) terraces, rather than in the bulk of aragonite particles. However, the total Mg content in the bulk and surface of aragonite particles was found to be too small to account for the measured Mg/Ca ratios in corals. We therefore argue that most Mg in corals is either highly metastable in the aragonite lattice, or is located outside the aragonite phase of the coral skeleton, and we discuss the implications of this finding for Mg/Ca paleothermometry.
Resumo:
We study the orientational ordering on the surface of a sphere using Monte Carlo and Brownian dynamics simulations of rods interacting with an anisotropic potential. We restrict the orientations to the local tangent plane of the spherical surface and fix the position of each rod to be at a discrete point on the spherical surface. On the surface of a sphere, orientational ordering cannot be perfectly nematic due to the inevitable presence of defects. We find that the ground state of four +1/2 point defects is stable across a broad range of temperatures. We investigate the transition from disordered to ordered phase by decreasing the temperature and find a very smooth transition. We use fluctuations of the local directors to estimate the Frank elastic constant on the surface of a sphere and compare it to the planar case. We observe subdiffusive behavior in the mean square displacement of the defect cores and estimate their diffusion constants.
Resumo:
We study a symplectic chain with a non-local form of coupling by means of a standard map lattice where the interaction strength decreases with the lattice distance as a power-law, in Such a way that one can pass continuously from a local (nearest-neighbor) to a global (mean-field) type of coupling. We investigate the formation of map clusters, or spatially coherent structures generated by the system dynamics. Such clusters are found to be related to stickiness of chaotic phase-space trajectories near periodic island remnants, and also to the behavior of the diffusion coefficient. An approximate two-dimensional map is derived to explain some of the features of this connection. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The nonequilibrium effective equation of motion for a scalar background field in a thermal bath is studied numerically. This equation emerges from a microscopic quantum field theory derivation and it is suitable to a Langevin simulation on the lattice. Results for both the symmetric and broken phases are presented.