973 resultados para Lattice Relaxation


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we investigate the effect of dephasing on proposed quantum gates for the solid-state Kane quantum computing architecture. Using a simple model of the decoherence, we find that the typical error in a controlled-NOT gate is 8.3x10(-5). We also compute the fidelities of Z, X, swap, and controlled Z operations under a variety of dephasing rates. We show that these numerical results are comparable with the error threshold required for fault tolerant quantum computation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Well-mixed blends of poly(ethylene) and poly(styrene) have been synthesized using supercritical carbon dioxide as a solvent. The morphology of the blends has been conclusively characterized using differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), Raman microprobe microscopy, and C-13 solid-state cross-polarization magic angle spinning NMR (C-13 CPMAS NMR). DSC measurements demonstrate that poly(styrene) in the blends resides solely in the amorphous regions of the poly(ethylene) matrix; however, corroborative evidence from the SAXS experiments shows that poly(styrene) resides within the interlamellar spaces. The existence of nanometer-sized domains of poly(styrene) was shown within a blend of poly(styrene) and poly(ethylene) when formed in supercritical carbon dioxide using Raman microprobe microscopy and C-13 CPMAS NMR spectroscopy coupled with a spin diffusion model. This contrasts with blends formed at ambient pressure in the absence of solvent, in which domains of poly(styrene) in the micrometer size range are formed. This apparent improved miscibility of the two components was attributed to better penetration of the monomer prior to polymerization and increased swelling of the polymer substrate by the supercritical carbon dioxide solvent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an ESR study at excitation frequencies of 9.4 GHz and 222.4 GHz of powders and single crystals of a Prussian Blue analogue (PBA), RbMn[Fe(CN)6]*H2O in which Fe and Mn undergoes a charge transfer transition between 175 and 300 K. The ESR of PBA powders, also reported by Pregelj et al. (JMMM, 316, E680 (2007)) is assigned to cubic magnetic clusters of Mn2+ ions surrounding Fe(CN)6 vacancies. The clusters are well isolated from the bulk and are superparamagnetic below 50 K. In single crystals various defects with lower symmetry are also observed. Spin-lattice relaxation broadens the bulk ESR beyond observability. This strong spin relaxation is unexpected above the charge transfer transition and is attributed to a mixing of the Mn3+ - Fe2+ state into the prevalent Mn2+ - Fe3+ state.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This thesis is concerned with the investigation, by nuclear magnetic resonance spectroscopy, of the molecular interactions occurring in mixtures of benzene and cyclohexane to which either chloroform or deutero-chloroform has been added. The effect of the added polar molecule on the liquid structure has been studied using spin-lattice relaxation time, 1H chemical shift, and nuclear Overhauser effect measurements. The main purpose of the work has been to validate a model for molecular interaction involving local ordering of benzene around chloroform. A chemical method for removing dissolved oxygen from samples has been developed to encompass a number of types of sample, including quantitative mixtures, and its supremacy over conventional deoxygenation technique is shown. A set of spectrometer conditions, the use of which produces the minimal variation in peak height in the steady state, is presented. To separate the general diluting effects of deutero-chloroform from its effects due to the production of local order a series of mixtures involving carbon tetrachloride, instead of deutero-chloroform, have been used as non-interacting references. The effect of molecular interaction is shown to be explainable using a solvation model, whilst an approach involving 1:1 complex formation is shown not to account for the observations. It is calculated that each solvation shell, based on deutero-chloroform, contains about twelve molecules of benzene or cyclohexane. The equations produced to account for the T1 variations have been adapted to account for the 1H chemical shift variations in the same system. The shift measurements are shown to substantiate the solvent cage model with a cage capacity of twelve molecules around each chloroform molecule. Nuclear Overhauser effect data have been analysed quantitatively in a manner consistent with the solvation model. The results show that discrete shells only exist when the mole fraction of deutero-chloroform is below about 0.08.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we demonstrate the potential of permanent magnet based magnetic resonance sensors to monitor and assess the extent of pore clogging in water filtration systems. The performance of the sensor was tested on artificially clogged gravel substrates and on gravel bed samples from constructed wetlands used to treat wastewater. Data indicate that the spin lattice relaxation time is linearly related to the hydraulic conductivity in such systems. In addition, within biologically active filters we demonstrate the ability to determine the relative ratio of biomass to abiotic solids, a measurement which is not possible using alternative techniques. © 2011 The Royal Society of Chemistry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In order to understand the role of translational modes in the orientational relaxation in dense dipolar liquids, we have carried out a computer ''experiment'' where a random dipolar lattice was generated by quenching only the translational motion of the molecules of an equilibrated dipolar liquid. The lattice so generated was orientationally disordered and positionally random. The detailed study of orientational relaxation in this random dipolar lattice revealed interesting differences from those of the corresponding dipolar liquid. In particular, we found that the relaxation of the collective orientational correlation functions at the intermediate wave numbers was markedly slower at the long times for the random lattice than that of the liquid. This verified the important role of the translational modes in this regime, as predicted recently by the molecular theories. The single-particle orientational correlation functions of the random lattice also decayed significantly slowly at long times, compared to those of the dipolar liquid.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extensive molecular dynamics simulations have been carried out to calculate the orientational correlation functions Cl(t), G(t) = [4n/(21 + l)]Ci=-l (Y*lm(sZ(0)) Ylm(Q(t))) (where Y,,(Q) are the spherical harmonics) of point dipoles in a cubic lattice. The decay of Cl(t) is found to be strikingly different from higher l-correlation functions-the latter do not exhibit diffusive dynamics even in the long time. Both the cumulant expansion expression of Lynden-Bell and the conventional memory function equation provide very good description of the Cl(t) in the short time but fail to reproduce the observed slow, long time decay of c1 (t) .

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Misfit defects in a 3C-SiC/Si (001) interface were investigated using a 200 kV high-resolution electron microscope with a point resolution of 0.194 nm. The [110] high-resolution electron microscopic images that do not directly reflect the crystal structure were transformed into the structure map through image deconvolution. Based on this analysis, four types of misfit dislocations at the 3C-SiC/Si (001) interface were determined. In turn, the strain relaxation mechanism was clarified through the generation of grow-in perfect misfit dislocations (including 90 degrees Lomer dislocations and 60 degrees shuffle dislocations) and 90 partial dislocations associated with stacking faults. (C) 2009 American Institute of Physics. [doi:10.1063/1.3234380]

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rotating-frame nuclear magnetic relaxation rate of spins diffusing on a disordered lattice has been calculated by Monte Carlo methods. The disorder includes not only variation in the distances between neighbouring spin sites but also variation in the hopping rate associated with each site. The presence of the disorder, particularly the hopping rate disorder, causes changes in the time-dependent spin correlation functions which translate into asymmetry in the characteristic peak in the temperature dependence of the dipolar relaxation rate. The results may be used to deduce the average hopping rate from the relaxation but the effect is not sufficiently marked to enable the distribution of the hopping rates to be evaluated. The distribution, which is a measure of the degree of disorder, is the more interesting feature and it has been possible to show from the calculation that measurements of the relaxation rate as a function of the strength of the radiofrequency spin-locking magnetic field can lead to an evaluation of its width. Some experimental data on an amorphous metal - hydrogen alloy are reported which demonstrate the feasibility of this novel approach to rotating-frame relaxation in disordered materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Transmission electron microscopy and spatially resolved electron energy-loss spectroscopy have been applied to investigate the indium distribution and the interface morphology in axial (In,Ga)N/GaN nanowire heterostructures. The ordered axial (In,Ga)N/GaN nanowire heterostructures with an indium concentration up to 80% are grown by molecular beam epitaxy on GaN-buffered Si(111) substrates. We observed a pronounced lattice pulling effect in all the nanowire samples given in a broad transition region at the interface. The lattice pulling effect becomes smaller and the (In,Ga)N/GaN interface width is reduced as the indium concentration is increased in the (In,Ga)N section. The result can be interpreted in terms of the increased plastic strain relaxation via the generation of the misfit dislocations at the interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to apply lattice Boltzmann equation method (LBM) with multiple relaxation time (MRT) model, to investigate lid-driven flow in a three-dimensional (3D), rectangular cavity, and compare the results with flow in an equivalent two-dimensional (2D) cavity. Design/methodology/approach - The second-order MRT model is implemented in a 3D LBM code. The flow structure in cavities of different aspect ratios (0.25-4) and Reynolds numbers (0.01-1000) is investigated. The LBM simulation results are compared with those from numerical solution of Navier-Stokes (NS) equations and with available experimental data. Findings - The 3D simulations demonstrate that 2D models may predict the flow structure reasonably well at low Reynolds numbers, but significant differences with experimental data appear at high Reynolds numbers. Such discrepancy between 2D and 3D results are attributed to the effect of boundary layers near the side-walls in transverse direction (in 3D), due to which the vorticity in the core-region is weakened in general. Secondly, owing to the vortex stretching effect present in 3D flow, the vorticity in the transverse plane intensifies whereas that in the lateral plane decays, with increase in Reynolds number. However, on the symmetry-plane, the flow structure variation with respect to cavity aspect ratio is found to be qualitatively consistent with results of 2D simulations. Secondary flow vortices whose axis is in the direction of the lid-motion are observed; these are weak at low. Reynolds numbers, but become quite strong at high Reynolds numbers. Originality/value - The findings will be useful in the study of variety of enclosed fluid flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important yet unsolved problem in the field of orientational relaxation in dipolar liquids is the dependence of the correlation functions C(l)(t), C(l)(t) = [4pi/(2l + 1)SIGMA(m = -l)l [Y(lm)(OMEGA(0)Y(lm)(OMEGA(t))] on the rank l (where Y(lm)(OMEGA) are the usual spherical harmonics). The existing theories on this effect differ in their predictions. To investigate this, we have carried out extensive computer simulations of a Brownian dipolar lattice. The dielectric friction was found to decrease rapidly with increasing l, in qualitative agreement with the predictions of Hubbard-Wolynes. However, the observed effect is much stronger than the predictions of the existing theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dipolar systems, both liquids and solids, constitute a class of naturally abundant systems that are important in all branches of natural science. The study of orientational relaxation provides a powerful method to understand the microscopic properties of these systems and, fortunately, there are many experimental tools to study orientational relaxation in the condensed phases. However, even after many years of intense research, our understanding of orientational relaxation in dipolar systems has remained largely imperfect. A major hurdle towards achieving a comprehensive understanding is the long range and complex nature of dipolar interactions which also made reliable theoretical study extremely difficult. These difficulties have led to the development of continuum model based theories, which although they provide simple, elegant expressions for quantities of interest, are mostly unsatisfactory as they totally neglect the molecularity of inter-molecular interactions. The situation has improved in recent years because of renewed studies, led by computer simulations. In this review, we shall address some of the recent advances, with emphasis on the work done in our laboratory at Bangalore. The reasons for the failure of the continuum model, as revealed by the recent Brownian dynamics simulations of the dipolar lattice, are discussed. The main reason is that the continuum model predicts too fast a decay of the torque-torque correlation function. On the other hand, a perturbative calculation, based on Zwanzig's projection operator technique, provides a fairly satisfactory description of the single particle orientational dynamics for not too strongly polar dipolar systems. A recently developed molecular hydrodynamic theory that properly includes the effects of intermolecular orientational pair correlations provides an even better description of the single-particle orientational dynamics. We also discuss the rank dependence of the dielectric friction. The other topics reviewed here includes dielectric relaxation and solvation dynamics, as they are intimately connected with orientational relaxation. Recent molecular dynamics simulations of the dipolar lattice are also discussed. The main theme of the present review is to understand the effects of intermolecular interactions on orientational relaxation. The presence of strong orientational pair correlation leads to a strong coupling between the single particle and the collective dynamics. This coupling can lead to rich dynamical properties, some of which are detailed here, while a major part remains yet unexplored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BiEuO3 (BE) and BiGdO3 (BG) are synthesized by the solid-state reaction technique. Rietveld refinement of the X-ray diffraction data shows that the samples are crystallized in cubic phase at room temperature having Fm3m symmetry with the lattice parameters of 5.4925(2) and 5.4712(2) A for BE and BG, respectively. Raman spectra of the samples are investigated to obtain the phonon modes of the samples. The dielectric properties of the samples are investigated in the frequency range from 42 Hz to 1.1 MHz and in the temperature range from 303 K to 673 K. An analysis of the real and imaginary parts of impedance is performed assuming a distribution of relaxation times as confirmed by the Cole-Cole plots. The frequency-dependent maxima in the loss tangent are found to obey an Arrhenius law with activation energy similar to 1 eV for both the samples. The frequency-dependent electrical data are also analyzed in the framework of conductivity formalism. Magnetization of the samples are measured under the field cooled (EC) and zero field cooled (ZFC) modes in the temperature range from 5 K to 300 K applying a magnetic Field of 500 Oe. The FC and ZFC susceptibilities show that BE is a Van Vleck paramagnetic material with antiferromagnetic coupling at low temperature whereas BG is an anti-ferromagnetic system. The results are substantiated by the M-11 loops of the materials taken at 5 K in the ZFC mode. (C) 2014 Elsevier B.V. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report structural, magnetic, and dielectric properties of the perovskite compound Pr1-xYxMnO3 (0.1 <= x <= 0.4) studied using dc magnetization, ac susceptibility, neutron powder diffraction, and dielectric techniques. These compounds crystallize in orthorhombic space group (Pnma) in the temperature range 5-300 K. The Mn-O-Mn bond angle decreases with the Y substitution along with an increase in the Jahn-Teller distortion. The Jahn-Teller distortion for Pr0.9Y0.1MnO3 shows an anomalous change near 50 K, below which it falls sharply. Neutron powder diffraction patterns of all reported compositions at low temperature constitute additional magnetic Bragg peaks that suggest magnetic ordering. Magnetic reflections were indexed in the nuclear lattice with the propagation vector k = (0, 0, 0). Rietveld refinement of powder patterns conform to A type antiferromagnetic ordering where moments are aligned ferromagnetically in a-c plane and coupled nearly antiferromagnetically along b-axis resulting in a net ferromagnetic component along the b-direction. The antiferromagnetic transition temperature was deduced from dc magnetization and ac susceptibility data. The transition temperature decreases by nearly 22 K (from 81 K to 59 K) as yttrium content (x) increases from 0.1 to 0.4. Measurements reveal strong frequency dispersion in dielectric constant and dielectric loss. Activation energy and relaxation time are estimated from the Arrhenius plot. It is further shown that relaxation behaviour is altered with yttrium doping concentration. (C) 2015 AIP Publishing LLC.