999 resultados para Late nitrogen fertilization


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cassava (Manihot esculenta) is one of the most important export crops in Thailand, yet the nitrogen requirement is unknown and not considered by growers and producers. Cassava requirements for N were determined in field experiments during a period of four years and four sites on the Satuk (Suk), Don Chedi (Dc), Pak Chong (Pc),and Ban Beung (BBg) soil series in Lopburi, Supanburi, Nakhon Ratchasima, and Chonburi sites, respectively. The fertilizer treatment structure comprised 0, 62.5, 125, 187.5, 250 and 312.5 kg N ha^(-1) as urea. At each site cassava was harvested at nine months and yield parameters and the minimum datasets were taken. The fertilizer rate which resulted in maximum yield ranged from 187.5 kg N ha^(-1) in Supanburi and Chonburi (fresh weight yield of 47,500 and 30,000 kg ha^(-1) respectively) to 250 kg N ha^(-1) in Lopburi and Nakhon Ratchasima (fresh weight yield of 64,100 and 46,700 kg ha^(-1) respectively). Yield appeared to decrease at the higher, 312 kg ha^(-1), at Supanburi and Lopburi, and 250 kg ha^(-1) (Chonburi) fertilizer N rates. Net revenue was 70.4 and 72.9 % higher than where no N was appliedLopburi and Nakhon Ratchasima sites. Net revenue at the Supanburi and Chonburi sites were 53.8 and 211.0 % higher than that where no N was applied. This study suggests that at all sites improved cassava production and net revenue could be obtained with the judicious application of higher quantities of N. The results provide needed guidance to nitrogen fertilization of the important industrial crop cassava in Thailand.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

At present, the Brazilian market prefers cabbage (Brassica oleracea var. capitata) of smaller size, which can be achieved by increasing population density; yet this management can alter the optimum rate of nitrogen (N), its second most required nutrient. This study was conducted in the Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil, from February to June 2004. The objective was to evaluate the effect of population density: 31 250 (DI) and 46 875 plants ha(-1) (D2) with 0, 100, 200 and 300 kg N ha-1 on the growth and production of cabbage Astrus. The experimental design consisted of randomized blocks with a 2 x 4 factorial arrangement and three replicates. Statistical analysis were a variance analysis (F test), the Tukey test for population density averages and polynomial regression for the N rates. In D1, an increase was recorded in the number of inner and outer leaves, dry matter of inner and outer leaves, the stem diameter at the insertion of the head, and the stem dry and fresh matter. The maximum size of the plant in D2 was 1.57 kg and was obtained with 300 kg N ha(-1), while in D1 it was 2.1 kg and was obtained with 244 kg N ha(-1). The optimal economic rate in 131 was 227.1 kg N ha(-1). The highest yield (72.7 t ha(-1)) was obtained with the highest N rate in D2. Smaller cabbage heads, commercially preferred, were obtained without the application of N, regardless of plant population.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Crop species with the C-4 photosynthetic pathway are more efficient in assimilating N than C-3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C-4 photosynthetic pathway, and black oat (Arena Strigosa) and triticale (X Triticosecale), with the C-3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha(-1) of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C-4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C-4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Avaliou-se o efeito da ausência e da aplicação de três doses de nitrogênio (50, 100 e 200 kg ha-1 de N) e quatro épocas de corte no inverno/primavera (julho a outubro) sobre a produtividade de massa seca (PMS), os teores relativos de clorofila (ICF _ índice de clorofila foliar) e os teores de nutrientes digestíveis totais (NDT), proteína bruta (PB), fibra em detergente neutro (FDN), fibra em detergente ácido (FDA) e lignina, bem como suas respectivas correlações nos capins tanzânia e mombaça após o consórcio com milho em um Latossolo Vermelho distroférrico. O delineamento experimental utilizado foi o de blocos casualizados, em parcelas subdivididas, com quatro repetições. As maiores PMS ocorreram com o aumento do fotoperíodo (a partir de agosto), no entanto, as respostas à adubação nitrogenada ao longo dos cortes diferiram entre e dentre os capins. em sistema de integração lavoura-pecuária irrigado sob condições de cerrado, é tecnicamente viável o estabelecimento dos capins tanzânia e mombaça em consórcio com o milho no momento da semeadura ou por ocasião da adubação nitrogenada de cobertura, visto que, mesmo na ausência de adubação nitrogenada, foi produzida quantidade satisfatória de forragem, com PMS média de 2.000 kg ha-1 por corte na época de maior escassez de volumoso para os animais (inverno/primavera). A adubação nitrogenada após a colheita do milho eleva a PMS e melhora a composição bromatológica dos capins, com aumento dos teores relativos de clorofila e PB no inverno/primavera, além de aumento dos teores de NDT e redução dos teores de FDN e FDA até o mês de setembro. O índice de clorofila foliar pode ser utilizado para estimar a PMS e o teor de PB, bem como indicar a necessidade de adubação nitrogenada dos capins tanzânia e mombaça submetidos a corte.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We describe the first satellite observation of intercontinental transport of nitrogen oxides emitted by power plants, verified by simulations with a particle tracer model. The analysis of such episodes shows that anthropogenic NOx plumes may influence the atmospheric chemistry thousands of kilometers away from its origin, as well as the ocean they traverse due to nitrogen fertilization. This kind of monitoring became possible by applying an improved algorithm to extract the tropospheric fraction of NO2 from the spectral data coming from the GOME instrument.As an example we show the observation of NO2 in the time period 4-14 May, 1998, from the South African Plateau to Australia which was possible due to favourable weather conditions during that time period which availed the satellite measurement. This episode was also simulated with the Lagrangian particle dispersion model FLEXPART which uses NOx emissions taken from an inventory for industrial emissions in South Africa and is driven with analyses from the European Centre for Medium-RangeWeather Forecasts. Additionally lightning emissions were taken into account by utilizing Lightning Imaging Sensor data. Lightning was found to contribute probably not more than 25% of the resulting concentrations. Both, the measured and simulated emission plume show matching patterns while traversing the Indian Ocean to Australia and show great resemblance to the aerosol and CO2 transport observed by Piketh et al. (2000).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Forage plants, particularly the Brachiaria genus, are the main source of nutrients for cattle and are at times the only feed offered. The concentration of elements in the plant is related to the soil, fertilization, climate, season, variety, and cultural practices. An experiment on dystrophic Red-Yellow Latosol soil in Aracatuba, São Paulo was performed to evaluate the effects of the doses and sources of nitrogen fertilizers on the chemical properties of the soil and the dry matter yield of the grass Brachiaria brizantha cv. Xaraes. A randomized block design was employed involving three replicates in a 3 x 3 factorial, with three doses (100, 200 and 400 kg ha(-1) year(-1)) and three sources (Ajifer (R) L40, ammonium sulfate and urea) of nitrogen and a control treatment without nitrogen (zero). The greatest effects on the chemical properties of the soil as a function of nitrogen fertilization in the Xaraes grass were observed in the topsoil. The use of Ajifer (R) L40 and ammonium sulfate as sources of nitrogen had similar effects, with an increase in the sulfur content and a reduction in the soil pH at the superficial layer. The use of the fertilizers Ajifer (R) L40, ammonium sulfate and urea did not affect the micronutrient contents, except for Fe and Mn, and did not alter the sodium concentration or electrical conductivity of the soil. The dry matter yield of Xaraes grass was similar for all three nitrogen sources.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

After harvest, sugarcane residues left on the soil surface can alter nitrogen (N) dynamics in the plant-soil system. In Oxisols, the nitrogen fertilizer applied had its effects on the levels of ammonium and nitrate in the soil, N concentration in the plant leaves, and on the growth and productivity of second ratoon plants. The N rates tested were of 0, 60, 120, 180, and 240 kg ha-1. Each treatment was replicated four times. Four months after the experiment was started, ammonium and nitrate concentration in the soil, N levels in plant leaves, and plant growth were evaluated. Productivity was evaluated 11 months after the experiment was set. By increasing the content of mineral N in soil, plant growth variables reflected differences in the production of stems; however, it did not affect foliar N. The use of leaf analysis was not important to assess the nutritional status of nitrogen in the ratoon sugarcane. Nitrogen concentration in soil was affected by nitrogen fertilization, but not the N content in leaves. The rate of 138 kg N ha-1enabled greater production of sugarcane stalks (140 t ha-1). © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biomass and forage volume density and the performance and stocking rate of sheep on pastures with nitrogen-fertilized Tifton 85 and subjected to a continuous stocking system were evaluated. Four doses of nitrogen (0, 100, 200, and 400 kg ha-1 year), arranged in an experimental design with randomized blocks and four replications, were analyzed. Sixteen paddocks and Santa Inês sheep were used as test animals, coupled to crossbreed Santa Inês sheep as regulating animal stocking. Nitrogen-fertilized Tifton 85 pastures increased the amount of forage biomass and volume density which affected stocking rate and weight gain of sheep in continuous grazing. When pastures with Tifton 85 were administered in variable load continuous stocking, with grass kept at 15 cm, nitrogen fertilization up to 400 kg ha-1 year is recommended.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In crop-livestock integration systems the presence of both grass roots in the soil and straw on the surface can temporarily immobilize nitrogen. This study examined the persistence of grass residues in the system as well as their effects on cotton response to N when grown after Congo grass (Brachiaria ruziziensis, Syn. Urochloa ruziziensis). Congo grass was grown in pots with soil. Next, cotton was grown in the same pots without residues, with whole plant residues (Congo grass roots and shoots) or root residues (grass roots) and fertilized with N as ammonium nitrate. Congo grass and cotton roots were separated using stable carbon isotope fractioning. Congo grass roots showed higher C/N ratio than shoots, losing 14% of its mass after 45 days and increasing soil N immobilization. The lower N availability resulted in N deficient and shorter cotton plants with lower dry matter yields. Nevertheless, the application of 80 to 120 mg kg-1 of N compensated the immobilization by the soil microorganisms, allowing cotton to show normal growth. When Congo grass is present in the cropping system, the effects of the decaying roots on soil N dynamics and availability are more important than those of the straw left on the soil surface.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The nutritional management of seedlings in the nursery is one of the most important practices that influence seedling quality. The aim of this work was to evaluate the effect of nitrogen, phosphorus and potassium on the development of Schizolobium amazonicum seedlings grown in 250 cm(3) containers with a commercial substrate in the North of Mato Grosso State, Brazil. The experimental design was completely randomized design with five treatments and five replications, each replication being represented by 24 seedlings. The treatments were: control (only commercial substrate); nitrogen fertilization (150 g m(-3) N using ammonium sulfate + 1.0 kg of ammonium sulfate dissolved in 100 L of water and applied in coverage); phosphorus fertilization (300 g P2O5 m(-3) using simple superphosphate); potassium fertilization (100 g m(-3) K2O using potassium chloride + 0.3 kg of potassium chloride dissolved in 100 L of water and applied in coverage) and; complete (a mixture of the three nutrients, 150, 300 and 100 g m(-3) N, P2O5 and K2O, respectively + 1.0 kg of ammonium sulfate + 0.3 kg of potassium chloride). The commercial substrate was composted milled pine bark plus vermiculite. Evaluations of the seedlings were performed at 90 days after sowing. The complete treatment (NPK) gave the highest values for biometric and best plant indices, which express the quality. When analyzing nutrients in isolation; potassium had the lowest effect. Based on these results it can be recommended to fertilize Schizolobium amazonicum seedlings in nurseries with 150, 300 and 100 g m(-3) of N, P2O5 and K2O, respectively, plus 1.0 kg of sulfate ammonium and 0.3 kg of potassium chloride applied in coverage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Der atmosphärische Kreislauf reaktiver Stickstoffverbindungen beschäftigt sowohl die Naturwissenschaftler als auch die Politik. Dies ist insbesondere darauf zurückzuführen, dass reaktive Stickoxide die Bildung von bodennahem Ozon kontrollieren. Reaktive Stickstoffverbindungen spielen darüber hinaus als gasförmige Vorläufer von Feinstaubpartikeln eine wichtige Rolle und der Transport von reaktivem Stickstoff über lange Distanzen verändert den biogeochemischen Kohlenstoffkreislauf des Planeten, indem er entlegene Ökosysteme mit Stickstoff düngt. Die Messungen von stabilen Stickstoffisotopenverhältnissen (15N/14N) bietet ein Hilfsmittel, welches es erlaubt, die Quellen von reaktiven Stickstoffverbindungen zu identifizieren und die am Stickstoffkeislauf beteiligten Reaktionen mithilfe ihrer reaktionsspezifischen Isotopenfraktionierung genauer zu untersuchen. rnIn dieser Doktorarbeit demonstriere ich, dass es möglich ist, mit Hilfe von Nano-Sekundärionenmassenspektrometrie (NanoSIMS) verschiedene stickstoffhaltige Verbindungen, die üblicherweise in atmosphärischen Feinstaubpartikeln vorkommen, mit einer räumlichen Auflösung von weniger als einem Mikrometer zu analysieren und zu identifizieren. Die Unterscheidung verschiedener stickstoffhaltiger Verbindungen erfolgt anhand der relativen Signalintensitäten der positiven und negativen Sekundärionensignale, die beobachtet werden, wenn die Feinstaubproben mit einem Cs+ oder O- Primärionenstrahl beschossen werden. Die Feinstaubproben können direkt auf dem Probenahmesubstrat in das Massenspektrometer eingeführt werden, ohne chemisch oder physikalisch aufbereited zu werden. Die Methode wurde Mithilfe von Nitrat, Nitrit, Ammoniumsulfat, Harnstoff, Aminosären, biologischen Feinstaubproben (Pilzsporen) und Imidazol getestet. Ich habe gezeigt, dass NO2 Sekundärionen nur beim Beschuss von Nitrat und Nitrit (Salzen) mit positiven Primärionen entstehen, während NH4+ Sekundärionen nur beim Beschuss von Aminosäuren, Harnstoff und Ammoniumsalzen mit positiven Primärionen freigesetzt werden, nicht aber beim Beschuss biologischer Proben wie z.B. Pilzsporen. CN- Sekundärionen werden beim Beschuss aller stickstoffhaltigen Verbindungen mit positiven Primärionen beobachtet, da fast alle Proben oberflächennah mit Kohlenstoffspuren kontaminiert sind. Die relative Signalintensität der CN- Sekundärionen ist bei kohlenstoffhaltigen organischen Stickstoffverbindungen am höchsten.rnDarüber hinaus habe ich gezeigt, dass an reinen Nitratsalzproben (NaNO3 und KNO3), welche auf Goldfolien aufgebracht wurden speziesspezifische stabile Stickstoffisotopenverhältnisse mithilfe des 15N16O2- / 14N16O2- - Sekundärionenverhältnisses genau und richtig gemessen werden können. Die Messgenauigkeit auf Feldern mit einer Rastergröße von 5×5 µm2 wurde anhand von Langzeitmessungen an einem hausinternen NaNO3 Standard als ± 0.6 ‰ bestimmt. Die Differenz der matrixspezifischen instrumentellen Massenfraktionierung zwischen NaNO3 und KNO3 betrug 7.1 ± 0.9 ‰. 23Na12C2- Sekundärionen können eine ernst zu nehmende Interferenz darstellen wenn 15N16O2- Sekundärionen zur Messung des nitratspezifischen schweren Stickstoffs eingesetzt werden sollen und Natrium und Kohlenstoff im selben Feinstaubpartikel als interne Mischung vorliegt oder die natriumhaltige Probe auf einem kohlenstoffhaltigen Substrat abgelegt wurde. Selbst wenn, wie im Fall von KNO3, keine derartige Interferenz vorliegt, führt eine interne Mischung mit Kohlenstoff im selben Feinstaubpartikel zu einer matrixspezifischen instrumentellen Massenfraktionierung die mit der folgenden Gleichung beschrieben werden kann: 15Nbias = (101 ± 4) ∙ f − (101 ± 3) ‰, mit f = 14N16O2- / (14N16O2- + 12C14N-). rnWird das 12C15N- / 12C14N- Sekundärionenverhältnis zur Messung der stabilen Stickstoffisotopenzusammensetzung verwendet, beeinflusst die Probematrix die Messungsergebnisse nicht, auch wenn Stickstoff und Kohlenstoff in den Feinstaubpartikeln in variablen N/C–Verhältnissen vorliegen. Auch Interferenzen spielen keine Rolle. Um sicherzustellen, dass die Messung weiterhin spezifisch auf Nitratspezies eingeschränkt bleibt, kann eine 14N16O2- Maske bei der Datenauswertung verwendet werden. Werden die Proben auf einem kohlenstoffhaltigen, stickstofffreien Probennahmesubstrat gesammelt, erhöht dies die Signalintensität für reine Nitrat-Feinstaubpartikel.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The super early genotypes (SEG) of dry bean (Phaseolus vulgaris L.) have a shorter life cycle (65-75 days) when compared with the season length of traditional cultivars (90-100 days). Timing of nitrogen top-dressing fertilization could be different because of this reduction in length of the SEG life cycle. This study aimed at characterizing, by using growth analysis and vegetation index, super early genotypes of dry bean development as affected by timing of nitrogen application. Field experiments were conducted in the 2014 and 2015 growing seasons in central Brazil with a randomized block experimental design with split plots scheme and four replicates. The plots comprised the dry bean genotypes (Colibri ? check cultivar, CNFC 15873, CNFC 15874, and CNFC 15875), and subplots comprised applications of N at different timings: 90 kg of N at sowing, 90 kg N at top-dressing; 45 kg of N at sowing plus 45 kg at top-dressing, with urea as the source of N. We also used a control treatment without N application. The CNFC 15874 super early genotype of dry bean had the higher grain yield (2776 kg ha-1) and differed from the CNFC 15873 genotype (2492 kg ha-1). Nitrogen fertilization allowed higher grain yield (2619 kg ha-1, when applied N at sowing, 2605 kg ha-1, when applied N at sowing and at top-dressing, and 2680 kg ha-1, when applied N at top-dressing) than the control, 2360 kg ha-1 (no N fertilization). The time of N fertilization in super early genotype of dry bean did not affect grain yield.