884 resultados para Largura de banda
Resumo:
Frequency Selective surfaces are increasingly common structures in telecommunication systems due to their geometric and electromagnetic advantages. As a matter of fact, the frequency selective surfaces with fractal geometry type would allow an even bigger reduction of the electrical length which provided greater flexibility in the design of these structures. In this work, we investigated the use of multifractal geometry in frequency selective surfaces. Three structures with different multifractal geometries have been proposed and analyzed. The first structure allowed the design of multiband structures with greater flexibility in controlling the resonant frequencies and bandwidth. The second structure provided a bandwidth increase even with the rising of the fractal level. The third structure showed response with angle stability, dual polarization and provided room for a bandwidth increase with the rising of the structural multifractality. Furthermore, the proposed structures increased the degree of freedom in the multiband designs because they have multiple resonant frequencies ratios between adjacent bands and are easy to deploy. The validation of the proposed structures was initially verified through simulations in Ansoft Designer software and then the structures were constructed and the experimental results obtained
Resumo:
This paper presents a study of the integration of filters and microstrip antennas, yielding devices named as filtennas for applications in wireless communications systems. The design of these structures is given from the observation of filtennas based integration between horn antennas and frequency selective surfaces (FSS), used in the band X. The choice of microstrip line structures for the development of a new configuration filtennas justifies the wide application of these transmission lines, in recent decades, always resulting in the production of circuit structures with planar light-weight, compact size, low cost, easy to construct and particularly easy to integrate with other microwave circuits. In addition, the antenna structure considered for the composition of filtennas consists of a planar monopole microstrip to microstrip filters integrated in the feed line of the antenna. In particular, are considered elliptical monopole microstrip (operating in UWB UWB) microstrip filters and (in structures with associated sections in series and / or coupled). In addition, the monopole microstrip has a proper bandwidth and omnidirectional radiation pattern, such that its integration with microstrip filters results in decreased bandwidth, but with slight changes in the radiation pattern. The methods used in the analysis of monopoles, and filters were filtennas finite elements and moments by using commercial software Ansoft Designer and HFSS Ansoft, respectively. Specifically, we analyze the main characteristics of filtennas, such as radiation pattern, gain and bandwidth. Were designed, constructed and measures, several structures filtennas, for validation of the simulated results. Were also used computational tools (CAD) in the process of building prototypes of planar monopoles, filters and filtennas. The prototypes were constructed on substrates of glass-fiber (FR4). Measurements were performed at the Laboratory for Telecommunications UFRN. Comparisons were made between simulated and measured, and found good agreement in the cases considered
Resumo:
In this dissertation, are presented two microstrip antennas and two arrays for applications in wireless communication systems multiband. Initially, we studied an antenna and a linear array consisting of two elements identical to the patch antenna isolated. The shape of the patch used in both structures is based on fractal geometry and has multiband behavior. Next a new antenna is analyzed and a new array such as initial structure, but with the truncated ground plane, in order to obtain better bandwidths and return loss. For feeding the structures, we used microstrip transmission line. In the design of planar structures, was used HFSS software for the simulation. Next were built and measures electromagnetic parameters such as input impedance and return loss, using vector network analyzer in the telecommunications laboratory of Federal University of Rio Grande do Norte. The experimental results were compared with the simulated and showed improved return loss for the first array and also appeared a fourth band and increased directivity compared with the isolated antenna. The first two benefits are not commonly found in the literature. For structures with a truncated ground planes, the technique improved impedance matching, bandwidth and return loss when compared to the initial structure with filled ground planes. Moreover, these structures exhibited a better distribution of frequency, facilitating the adjustment of frequencies. Thus, it is expected that the planar structures presented in this study, particularly arrays may be suitable for specific applications in wireless communication systems when frequency multiband and wideband transmission signals are required.
Resumo:
This work aims to investigate the behavior of fractal and helical elements structures in planar microstrip. In particular, the frequency selective surfaces (FSSs) had changed its conventional elements to fractal and helical formats. The dielectric substrate used was fiberglass (FR-4) and has a thickness of 1.5 mm, a relative permittivity 4.4 and tangent loss equal to 0.02. For FSSs, was adopting the Dürer’s fractal geometry and helical geometry. To make the measurements, we used two antennas horns in direct line of sight, connected by coaxial cable to the vector network analyzer. Some prototypes were select for built and measured. From preliminary results, it was aimed to find practical applications for structures from the cascading between them. For FSSs with Dürer’s fractal elements was observed behavior provided by the multiband fractal geometry, while the bandwidth has become narrow as the level of iteration fractal increased, making it a more selective frequency with a higher quality factor. A parametric analysis allowed the analysis of the variation of the air layer between them. The cascading between fractal elements structure were considered, presented a tri-band behavior for certain values of the layer of air between them, and find applications in the licensed 2.5GHz band (2.3-2.7) and 3.5GHz band (3.3-3.8). For FSSs with helical elements, six structures were considered, namely H0, H1, H2, H3, H4 and H5. The electromagnetic behavior of them was analyzed separately and cascaded. From preliminary results obtained from the separate analysis of structures, including the cascade, the higher the bandwidth, in that the thickness of the air layer increases. In order to find practical applications for helical structures cascaded, the helical elements structure has been cascaded find applications in the X-band (8.0-12.0) and unlicensed band (5.25-5.85). For numerical and experimental characterization of the structures discussed was used, respectively, the commercial software Ansoft Designer and a vector network analyzer, Agilent N5230A model.
Resumo:
The microstrip antennas in your simplest form consist of a ground plane and a dielectric substrate which supports a conductive tape. As these antennas have some limitations, this work presents a study of anisotropic substrates, as well as some results in microstrip antennas with circular patch, aiming to overcome these limitations, especially in applications at 4G technology. These anisotropic substrates are those in which electrical permittivity and magnetic permeability are represented by tensors of second order. The study consists of a theoretical analysis of substrates and development of a mathematical formalism, the Transverse Transmission Line Method, aimed the application of these substrates in microstrip antennas. Among the substrates used in this study, there are the ferrimagnetic and metamaterials, in which some miniaturizations of the antennas are achieved. For antennas with circular patch, are considered arrays and modified ground planes in order to achieve improvement in parameters, in particular, gain and bandwidth. Several simulations have been made and antennas were constructed so that the measured values could be compared with the simulated values.
Resumo:
This work aims to propose a new model of metasurface with simplified basic cell, able to convert linearly polarized signals generated by planar antenna array in circularly polarized signals, for the ISM frequency band (2.45 GHz), with good bandwidth of return loss and axial ratio. To study the behavior of the proposed structure, the metasurface is coupled to three different structures. First, initial tests are made with the metasurface coupled to a microstrip antenna in its simple configuration. Then the metasurface is coupled to an array with two elements of patch type. And later it is coupled to an optimized array, that uses a stub in its main feed, to get a better impedance matching. The structures are analyzed numerically through Ansoft HFSS™, and to validate these results, the structures are characterized experimentally. The characteristics of transmissions simulated and measures are presented. A good agreement between simulated and measured results was obtained. The structure proposed here has the advantage of meeting the desired characteristics, with a simple geometry to be built using a low-cost substrate (FR-4).
Resumo:
This work aims to propose a new model of metasurface with simplified basic cell, able to convert linearly polarized signals generated by planar antenna array in circularly polarized signals, for the ISM frequency band (2.45 GHz), with good bandwidth of return loss and axial ratio. To study the behavior of the proposed structure, the metasurface is coupled to three different structures. First, initial tests are made with the metasurface coupled to a microstrip antenna in its simple configuration. Then the metasurface is coupled to an array with two elements of patch type. And later it is coupled to an optimized array, that uses a stub in its main feed, to get a better impedance matching. The structures are analyzed numerically through Ansoft HFSS™, and to validate these results, the structures are characterized experimentally. The characteristics of transmissions simulated and measures are presented. A good agreement between simulated and measured results was obtained. The structure proposed here has the advantage of meeting the desired characteristics, with a simple geometry to be built using a low-cost substrate (FR-4).
Resumo:
The substantial increase in the number of applications offered through the computer networks, as well as in the volume of traffic forwarded through the network, have hampered to assure adequate service level to users. The Quality of Service (QoS) offer, honoring specified parameters in Service Level Agreements (SLA), established between the service providers and their clients, composes a traditional and extensive computer networks’ research area. Several schemes proposals for the provision of QoS were presented in the last three decades, but the acting scope of these proposals is always limited due to some factors, including the limited development of the network hardware and software, generally belonging to a single manufacturer. The advent of Software Defined Networking (SDN), along with the maturation of its main materialization, the OpenFlow protocol, allowed the decoupling between network hardware and software, through an architecture which provides a control plane and a data plane. This eases the computer networks scenario, allowing that new abstractions are applied in the hardware composing the data plane, through the development of new software pieces which are executed in the control plane. This dissertation investigates the QoS offer through the use and extension of the SDN architecture. Based on the proposal of two new modules, one to perform the data plane monitoring, SDNMon, and the second, MP-ROUTING, developed to determine the use of multiple paths in the forwarding of data referring to a flow, we demonstrated in this work that some QoS metrics specified in the SLAs, such as bandwidth, can be honored. Both modules were implemented and evaluated through a prototype. The evaluation results referring to several aspects of both proposed modules are presented in this dissertation, showing the obtained accuracy of the monitoring module SDNMon and the QoS gains due to the utilization of multiple paths defined by the MP-Routing, when forwarding data flow through the SDN.
Resumo:
A popularidade dos dispositivos móveis tem vindo a aumentar significativamente nos últimos anos e, com isso, surge a necessidade de aceder à Internet nos smartphones e tablets, quer para fins laborais quer para lazer. Devido às limitações de tráfego nas redes móveis, como 3G ou 4G, as pessoas procuram conectar-se aos pontos de acesso nas suas proximidades para poupar tráfego móvel. Os pontos de acesso também são uma outra forma de se conseguir conectar à Internet no estrangeiro, mesmo quando não se tem disponível um plano de dados móveis. As soluções existentes, que visam conectar os seus utilizadores à Internet através de pontos de acesso, requerem o pagamento de uma taxa elevada ou violam a privacidade das redes Wi-Fi ao permitir que todos os utilizadores se consigam conectar sem a devida autorização dos proprietários e que consumam tráfego e largura de banda sem quaisquer restrições. Com este trabalho pretende-se permitir que os proprietários das redes possam limitar os recursos de quem acede às suas redes (tráfego, largura de banda e/ou número de utilizadores conectados) usando apenas uma aplicação Android para fazer todo o controlo de acesso e limitação de recursos. Além de limitar os recursos pretende-se possibilitar a interoperabilidade entre pontos de acesso de diferentes plataformas para permitir que utilizadores de diferentes operadores de telecomunicações possam partilhar as suas redes mutuamente. Para se atingir estes objetivos foi desenvolvido um sistema composto por uma aplicação Android e um servidor web. O teste da solução foi feito através de testes com utilizadores, identificando-se que os participantes partilharam maioritariamente as suas próprias redes. A maioria dos utilizadores optou por partilhar as suas redes de forma pública (com todos os utilizadores) e limitar o número de utilizadores conectados para salvaguardar o desempenho da sua ligação. Com este trabalho, consegue-se concluir que é possível incentivar os utilizadores a partilhar as suas redes caso estejam presentes mecanismos que consigam manter a privacidade da rede e que lhes consigam dar controlo sobre a partilha.
Resumo:
Over the past few years, the number of wireless networks users has been increasing. Until now, Radio-Frequency (RF) used to be the dominant technology. However, the electromagnetic spectrum in these region is being saturated, demanding for alternative wireless technologies. Recently, with the growing market of LED lighting, the Visible Light Communications has been drawing attentions from the research community. First, it is an eficient device for illumination. Second, because of its easy modulation and high bandwidth. Finally, it can combine illumination and communication in the same device, in other words, it allows to implement highly eficient wireless communication systems. One of the most important aspects in a communication system is its reliability when working in noisy channels. In these scenarios, the received data can be afected by errors. In order to proper system working, it is usually employed a Channel Encoder in the system. Its function is to code the data to be transmitted in order to increase system performance. It commonly uses ECC, which appends redundant information to the original data. At the receiver side, the redundant information is used to recover the erroneous data. This dissertation presents the implementation steps of a Channel Encoder for VLC. It was consider several techniques such as Reed-Solomon and Convolutional codes, Block and Convolutional Interleaving, CRC and Puncturing. A detailed analysis of each technique characteristics was made in order to choose the most appropriate ones. Simulink models were created in order to simulate how diferent codes behave in diferent scenarios. Later, the models were implemented in a FPGA and simulations were performed. Hardware co-simulations were also implemented to faster simulation results. At the end, diferent techniques were combined to create a complete Channel Encoder capable of detect and correct random and burst errors, due to the usage of a RS(255,213) code with a Block Interleaver. Furthermore, after the decoding process, the proposed system can identify uncorrectable errors in the decoded data due to the CRC-32 algorithm.
Resumo:
Nowadays, wireless communications systems demand for greater mobility and higher data rates. Moreover, the need for spectral efficiency requires the use of non-constant envelope modulation schemes. Hence, power amplifier designers have to build highly efficient, broadband and linear amplifiers. In order to fulfil these strict requirements, the practical Doherty amplifier seems to be the most promising technique. However, due to its complex operation, its nonlinear distortion generation mechanisms are not yet fully understood. Currently, only heuristic interpretations are being used to justify the observed phenomena. Therefore, the main objective of this work is to provide a model capable of describing the Doherty power amplifier nonlinear distortion generation mechanisms, allowing the optimization of its design according to linearity and efficiency criteria. Besides that, this approach will allow a bridge between two different worlds: power amplifier design and digital pre-distortion since the knowledge gathered from the Doherty operation will serve to select the most suitable pre-distortion models.
Resumo:
Os veículos aéreos não tripulados, mais conhecidos por drones, têm tomado atualmente uma posição importante na sociedade. Para além da sua importância no meio militar, têm sido cada vez mais utilizados para meios comerciais uma vez que o seu custo é relativamente baixo e podem ser utilizados para inúmeras aplicações. Devido à sua importância em missões de salvamento, reconhecimento de terreno e até mesmo de ataque, é fundamental uma boa comunicação entre a aeronave e a estação terrestre. Sendo a antena um dos principais elementos do sistema de comunicação, esta dissertação centrou-se no desenvolvimento de uma agregado de antenas a operar à frequência de 2.45GHz. Pretende-se que este agregado apresente polarização circular direita bem como um ganho e largura de banda elevados. Com o objetivo de se obter uma comunicação mais eficiente entre a aeronave e a estação terrestre, o agregado permitirá o redirecionamento do feixe principal do diagrama de radiação. Para tal, serão analisadas três abordagens distintas recorrendo a linhas de atraso e switches, permitindo que seja efetuado beamforming.
Resumo:
In the last years there has been a clear evolution in the world of telecommunications, which goes from new services that need higher speeds and higher bandwidth, until a role of interactions between people and machines, named by Internet of Things (IoT). So, the only technology able to follow this growth is the optical communications. Currently the solution that enables to overcome the day-by-day needs, like collaborative job, audio and video communications and share of les is based on Gigabit-capable Passive Optical Network (G-PON) with the recently successor named Next Generation Passive Optical Network Phase 2 (NG-PON2). This technology is based on the multiplexing domain wavelength and due to its characteristics and performance becomes the more advantageous technology. A major focus of optical communications are Photonic Integrated Circuits (PICs). These can include various components into a single device, which simpli es the design of the optical system, reducing space and power consumption, and improves reliability. These characteristics make this type of devices useful for several applications, that justi es the investments in the development of the technology into a very high level of performance and reliability in terms of the building blocks. With the goal to develop the optical networks of future generations, this work presents the design and implementation of a PIC, which is intended to be a universal transceiver for applications for NG-PON2. The same PIC will be able to be used as an Optical Line Terminal (OLT) or an Optical Network Unit (ONU) and in both cases as transmitter and receiver. Initially a study is made of Passive Optical Network (PON) and its standards. Therefore it is done a theoretical overview that explores the materials used in the development and production of this PIC, which foundries are available, and focusing in SMART Photonics, the components used in the development of this chip. For the conceptualization of the project di erent architectures are designed and part of the laser cavity is simulated using Aspic™. Through the analysis of advantages and disadvantages of each one, it is chosen the best to be used in the implementation. Moreover, the architecture of the transceiver is simulated block by block through the VPItransmissionMaker™ and it is demonstrated its operating principle. Finally it is presented the PIC implementation.
Resumo:
This thesis aims to investigate the interaction of acoustic waves and fiber Bragg gratings (FBGs) in standard and suspended-core fibers (SCFs), to evaluate the influence of the fiber, grating and modulator design on the increase of the modulation efficiency, bandwidth and frequency. Initially, the frequency response and the resonant acoustic modes of a low frequency acousto-optic modulator (f < 1.2 MHz) are numerically investigated by using the finite element method. Later, the interaction of longitudinal acoustic waves and FBGs in SCFs is also numerically investigated. The fiber geometric parameters are varied and the strain and grating properties are simulated by means of the finite element method and the transfer matrix method. The study indicates that the air holes composing the SCF cause a significant reduction of the amount of silica in the fiber cross section increasing acousto-optic interaction in the core. Experimental modulation of the reflectivity of FBGs inscribed in two distinct SCFs indicates evidences of this increased interaction. Besides, a method to acoustically induce a dynamic phase-shift in a chirped FBG employing an optimized design of modulator is shown. Afterwards, a combination of this modulator and a FBG inscribed in a three air holes SCF is applied to mode-lock an ytterbium doped fiber laser. To improve the modulator design for future applications, two other distinct devices are investigated to increase the acousto-optic interaction, bandwidth and frequency (f > 10 MHz). A high reflectivity modulation has been achieved for a modulator based on a tapered fiber. Moreover, an increased modulated bandwidth (320 pm) has been obtained for a modulator based on interaction of a radial long period grating (RLPG) and a FBG inscribed in a standard fiber. In summary, the results show a considerable reduction of the grating/fiber length and the modulator size, indicating possibilities for compact and faster acousto-optic fiber devices. Additionally, the increased interaction efficiency, modulated bandwidth and frequency can be useful to shorten the pulse width of future all-fiber mode-locked fiber lasers, as well, to other photonic devices which require the control of the light in optical fibers by electrically tunable acoustic waves.
Resumo:
A popularidade dos dispositivos móveis tem vindo a aumentar significativamente nos últimos anos e, com isso, surge a necessidade de aceder à Internet nos smartphones e tablets, quer para fins laborais quer para lazer. Devido às limitações de tráfego nas redes móveis, como 3G ou 4G, as pessoas procuram conectar-se aos pontos de acesso nas suas proximidades para poupar tráfego móvel. Os pontos de acesso também são uma outra forma de se conseguir conectar à Internet no estrangeiro, mesmo quando não se tem disponível um plano de dados móveis. As soluções existentes, que visam conectar os seus utilizadores à Internet através de pontos de acesso, requerem o pagamento de uma taxa elevada ou violam a privacidade das redes Wi-Fi ao permitir que todos os utilizadores se consigam conectar sem a devida autorização dos proprietários e que consumam tráfego e largura de banda sem quaisquer restrições. Com este trabalho pretende-se permitir que os proprietários das redes possam limitar os recursos de quem acede às suas redes (tráfego, largura de banda e/ou número de utilizadores conectados) usando apenas uma aplicação Android para fazer todo o controlo de acesso e limitação de recursos. Além de limitar os recursos pretende-se possibilitar a interoperabilidade entre pontos de acesso de diferentes plataformas para permitir que utilizadores de diferentes operadores de telecomunicações possam partilhar as suas redes mutuamente. Para se atingir estes objetivos foi desenvolvido um sistema composto por uma aplicação Android e um servidor web. O teste da solução foi feito através de testes com utilizadores, identificando-se que os participantes partilharam maioritariamente as suas próprias redes. A maioria dos utilizadores optou por partilhar as suas redes de forma pública (com todos os utilizadores) e limitar o número de utilizadores conectados para salvaguardar o desempenho da sua ligação. Com este trabalho, consegue-se concluir que é possível incentivar os utilizadores a partilhar as suas redes caso estejam presentes mecanismos que consigam manter a privacidade da rede e que lhes consigam dar controlo sobre a partilha.