948 resultados para Laplace transforms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hughston has shown that projective pure spinors can be used to construct massless solutions in higher dimensions, generalizing the four-dimensional twistor transform of Penrose. In any even (euclidean) dimension d = 2n, projective pure spinors parameterize the coset space SO(2n)/U(n), which is the space of all complex structures on ℝ2n. For d = 4 and d = 6, these spaces are ℂℙ1 and ℂℙ3 and the appropriate twistor transforms can easily be constructed. In this paper, we show how to construct the twistor transform for d > 6 when the pure spinor satisfies nonlinear constraints, and present explicit formulas for solutions of the massless field equations. © SISSA/ISAS 2005.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Properties of the Jacobi script v sign3-function and its derivatives under discrete Fourier transforms are investigated, and several interesting results are obtained. The role of modulo N equivalence classes in the theory of script v sign-functions is stressed. An important conjecture is studied. © 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The second-order differential equations that describe the polyphase transmission line are difficult to solve due to the mutual coupling among them and the fact that the parameters are distributed along their length. A method for the analysis of polyphase systems is the technique that decouples their phases. Thus, a system that has n phases coupled can be represented by n decoupled single-phase systems which are mathematically identical to the original system. Once obtained the n-phase circuit, it's possible to calculate the voltages and currents at any point on the line using computational methods. The Universal Line Model (ULM) transforms the differential equations in the time domain to algebraic equations in the frequency domain, solve them and obtain the solution in the frequency domain using the inverse Laplace transform. This work will analyze the method of modal decomposition in a three-phase transmission line for the evaluation of voltages and currents of the line during the energizing process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work has as its goal to treat well known and interesting unidimensional cases from quantum mechanics through an unusual approach within this eld of physics. The operational method of Laplace transform, in spite of its use by Erwin Schrödinger in 1926 when treating the radial equation for the hydrogen atom, turned out to be forgotten for decades. However, the method has gained attention again for its use as a powerful tool from mathematical physics applied to the quantum mechanics, appearing in recent works. The method is specially suitable to the approach of cases where we have potential functions with even parity, because this implies in eigenfunctions with de ned parity, and since the domain of this transform ranges from 0 to ∞, it su ces that we nd the eigenfunction in the positive semi axis and, with the boundary conditions imposed over the eigenfunction at the origin plus the continuity (discontinuity) of the eigenfunction and its derivative, we make the odd, even or both parity extensions so we can get the eigenfunction along all the axis. Factoring the eigenfunction behavior at in nity and origin, we take the due care with the points that might bring us problems in the later steps of the solving process, thus we can manipulate the Schrödinger's Equation regardless of time, so that way we make it convenient to the application of Laplace transform. The Chapter 3 shows the methodology that must be followed in order to search for the solutions to each problem

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this Note it is worked out a new set of Laplace-Like equations for quaternions through Riemann-Cauchy hypercomplex relations otained earlier [1]. As in the theory of functions of a complex variable, it is expected that this new set of Laplace-Like equations might be applied to a large number of Physical problems, providing new insights in the Classical Fields Theory.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Voltages and currents in the transmission line are described by differential equations that are difficult to solve due soil and skin effect that has to be considered for accurate results, but it increases their complexity. Therefore there are some models to study the voltages and currents along in transmission line. The distributed parameters model that transforms the equations in time domain to the frequency domain and once the solutions are obtained, they are converted to time domain using the Inverse Laplace Transform using numerical methods. Another model is named lumped parameters model and it considers the transmission line represented by a pi-circuit cascade and the currents and voltages are described by state equations. In the simulations using the lumped parameters model, it can be observed the presence of spurious oscillations that are independent of the quantity of pi-circuits used and do not represent the real value of the transient. In this work will be projected a passive low-pass filter directly inserted in the lumped parameters model to reduce the spurious oscillations in the simulations, making this model more accurate and reliable for studying the electromagnetic transients in power systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the action of a weighted Fourier–Laplace transform on the functions in the reproducing kernel Hilbert space (RKHS) associated with a positive definite kernel on the sphere. After defining a notion of smoothness implied by the transform, we show that smoothness of the kernel implies the same smoothness for the generating elements (spherical harmonics) in the Mercer expansion of the kernel. We prove a reproducing property for the weighted Fourier–Laplace transform of the functions in the RKHS and embed the RKHS into spaces of smooth functions. Some relevant properties of the embedding are considered, including compactness and boundedness. The approach taken in the paper includes two important notions of differentiability characterized by weighted Fourier–Laplace transforms: fractional derivatives and Laplace–Beltrami derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we introduce an analytical approach for the frequency warping transform. Criteria for the design of operators based on arbitrary warping maps are provided and an algorithm carrying out a fast computation is defined. Such operators can be used to shape the tiling of time-frequency plane in a flexible way. Moreover, they are designed to be inverted by the application of their adjoint operator. According to the proposed mathematical model, the frequency warping transform is computed by considering two additive operators: the first one represents its nonuniform Fourier transform approximation and the second one suppresses aliasing. The first operator is known to be analytically characterized and fast computable by various interpolation approaches. A factorization of the second operator is found for arbitrary shaped non-smooth warping maps. By properly truncating the operators involved in the factorization, the computation turns out to be fast without compromising accuracy.