993 resultados para Langmuir-Blodgett technique
Resumo:
The temperature dependence of photoinduced birefringence was investigated for mixed Langmuir-Blodgett (LB) films from the homopolymer poly[4'-[[2-(methacryloyloxy)ethyl]ethyl-amino]-2-chloro-4-nitroazobenzene] (HPDR13) and cadmium stearate (Cdst) and from the copolymer 4-[N-ethyl-N-(2-hydroxyethyl)]amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) and CdSt. Birefringence was achieved by impinging a linearly polarized light on the LB films. The maximum birefringence achieved decreased with temperature as thermal relaxation of the chromophores was facilitated. The buildup curves for birefringence were fitted with biexponential functions representing distinctly different mechanisms with time constants. The first, fast process is thermally activated and may be represented by an Arrhenius process. The decay of birefringence after switching off the laser source was described by a Kohlraush-Williams-Watts (KWW) function, consistent with a distribution of relaxation times for the polymer system. Activation energies were obtained from Arrhenius plots of the rate constant of the exponential functions and KWW function, which showed that the buildup of birefringence was very similar for the two polymer systems. The decay, however, was slower for the LB film from MMA-DR13/CdSt. (C) 2002 Published by Elsevier B.V. Ltd.
Resumo:
Langmuir-Blodgett (LB) films from a ruthenium complex, mer-[RuCl3(dppb)(py)] (dppb = PPh2(CH2)(4)PPh2; py = pyridine) (Rupy), and from mixtures with varied amounts of polyaniline (PANi) were fabricated. Molecular-level interactions between the two components are investigated by surface potential, dc conductivity and Raman spectroscopy measurements, particularly for the mixed film with 10% of Rupy. For the latter, the better miscibility led to an interaction with Rupy inducing a decrease in the conducting state of PANi, as observed in the Raman spectra and conductivity measurement. The interaction causes the final film properties to depend on the concentration of Rupy, and this was exploited to produce a sensor array made up of sensing units consisting of 11-layer LB films from pure PANi, pure Rupy and mixtures with 10 and 30% of Rupy. It is shown that the combination of only four non-specific sensing units allows one to distinguish the basic tastes detected by biological systems, viz. saltiness, sweetness, sourness and bitterness, at the muM level. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
We report on the use of dynamic scale theory and fractal analyses in a study of the growth stages of Langmuir-Blodgett (LB) films of polyaniline and a neutral biphosphinic ruthenium complex, namely mer-[ RuCl3 (dppb)(py)] (dppb = 1,4-bis(diphenylphosphine) buthane, py = pyridine), Rupy. The LB films were deposited onto indium-tin-oxide substrates and characterized with atomic force microscopy. From the granular morphology exhibited by the films one could infer growth processes inside and outside the grains. Growth outside was found to follow the Kardar-Parisi-Zhang model, with fractal dimensions of about 2.7. As one would expect, inside the grains the morphology is close to a Euclidian surface with fractal dimension of about 2.
Resumo:
Atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) are used to investigate molecular organization in Langmuir-Blodgett (LB) films of two kinds of lignins. The lignins were extracted from sugar cane bagasse using distinct extraction processes and are referred to here as ethanol lignin (EL) and saccharification lignin (SAC). AFM images show that LB films from EL have a flat surface in comparison with those from SAC. For the latter, ellipsoidal aggregates are seen oriented perpendicularly to the substrate. This result is confirmed by a combination of transmission and reflection FTIR measurements, which also point to lignin aggregates preferentially oriented perpendicularly to the substrate. For LB films from EL, on the other hand, aggregates are preferentially oriented parallel to the substrate, again consistent with the flat surface observed in AFM data. The vibrational spectroscopy data for cast films from both lignins show random molecular organization, as one should expect.
Resumo:
The temperature dependence has been investigated for the photoinduced birefringence in Langmuir-Blodgett (LB) films from the azocopolymer 4-[N- ethyl -N-(2-hydroxyethyl)] amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) mixed with cadmium stearate. The buildup and relaxation of the birefringence in the range from 20 to 296 K were fitted with a Kohlrausch-Williams-Watts (KWW) function, with a beta-value of 0.78-0.98 for the build-up and 0.18-0.27 for the decay. This is consistent with a distribution of time constants for the kinetics of the birefringence processes. The maximum birefringence increased with increasing temperature up to 120 K because the free volume fluctuation also increased with temperature. Above 120 K, the birefringence decreased with temperature as thermal diffusion dominates. In the latter range of temperature, an Arrhenius behavior is inferred for both build-up and decay of birefringence. In each case two activation energies were obtained: 0.8 and 5 kJ/mol for the build-up and 10 and 30 kJ/mol for the decay. The energies for the build-up are much lower than those associated with motion of the polymer chain, which means that the dynamics is governed by the orientation of the chromophores. For the decay, local motion of lateral groups of the polymer chains becomes important as the activation energies are within the range of gamma-relaxation energies. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Langmuir monolayers and Langmuir-Blodgett (LB) films have been produced from polyaniline and a biphosphinic ruthenium complex, referred to as Rupy. Strong, repulsive interaction between the two components led to a nonlinear change in area per molecule and surface potential with the concentration of Rupy in the mixed film. Molecular interaction was also denoted in the spectroscopic and electrochemical properties of the Y-type LB transferred films. The Raman spectra of mixed PANI-Rupy films indicated that the degree of oxidation of PANI increased linearly with the concentration of Ropy. With PANI being increasingly oxidized by presence of Rupy, the electroactivity of the mixed films decreased with the amount of Rupy, to become undetectable when the mixed LB film is 501 mol in Rupy. The presence of Rupy caused the electrical properties of the mixed LB films to be less sensitive to environmental changes. The electrical capacitance of a mixed film changed only by 15% when the sample was taken from vacuum to air, whereas the change was 215% for a pure PANI LB film.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Langmuir and Langmuir-Blodgett films of 16-membered azobenzocrown ether with naphthalene residue were prepared and characterized. The Langmuir monolayers were successfully transferred to form LB films onto solid substrates. The films deposited onto ITO electrodes were also used as electrodes in cyclic voltammetry and the results showed that the films had a distinct response to metal ions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Poly(p-phenylene vinylene) (PPV) derivatives are well known for their applications in polymer light emitting diodes (PLEDs). These derivatives are highly susceptible to photooxidation though, which is mainly caused by the scission of the vinyl double bond on the polymer backbone. In this work, we show that Langmuir-Blodgett (LB) films are less degraded than cast films of a PPV derivative (OC1OC6-PPV). Both films had similar thickness (∼50 nm) to allow for a more realistic comparison. Photodegradation experiments were carried out by illuminating the films with white light from a halogen lamp (50W, 12 V), placed at a fixed dstance from the sample. The decay was monitored by UV-Vis and FTIR spectroscopies. The results showed that cast films are completely degraded in ca. 300 min, while LB took longer times, ca. 1000 min, i.e. 3 times the values for the cast films. The degradation process occurs in at least two stages, the rates of which were calculated assuming that the reaction follows a first order kinetics. The characteristic times for the first stage were 3.6×10-2 and 1.3×10-3 min-1 for cast and LB films, respectively. For the second stage the characteristic times were 5.6×10-2 and 5.0×10 -3 min-1. The differences can be attributed to the more compact morphology in the LB than in the cast films. With a compact morphology the diffusion of oxygen in the LB film is hampered and this causes a delay in the degradation process.
Resumo:
Polyfluorenes are promising materials for the emitting layer of polymer light emitting devices (PLEDs) with blue emission. In this work, we report on PLEDs fabricated with Langmuir-Blodgett (LB) films of a polyfluorene derivative, namely poly(9,9-di-hexylfluorenediyl vinylene-alt-1,4-phenylenevinylene) (PDHF-PV). Y-type LB films were transferred onto ITO substrates at a surface pressure of 35 mN m-1 and with dipping speed of 3 mm min -1. A thin aluminum layer was evaporated on top of the LB film, thus yielding a sandwich structure (ITO/PDHF-PV(LB)/Al). Current-voltage (I vs V) measurements indicate that the device displays a classical behavior of a rectifying diode. The threshold value is approximately 5 V, and the onset for visible light emission occurs at ca. 10 V. From the a.c. electrical responses we infer that the active layer has a typical behavior of PLEDs where the real component of ac conductivity obeys a power-law with the frequency. Cole-Cole plots (Im(Z) vs. Re(Z)) for the device exhibit a series of semicircles, the diameter of which decreases with increasing forward bias. This PLED structure is modeled by a parallel resistance and capacitance combination, representing the dominant mechanisms of charge transport and polarization in the organic layer, in series with a resistance representing the ITO contact. Overall, the results presented here demonstrate the feasibility of LEDs made with LB films of PDHF-PV.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)