883 resultados para Land use, development, and construction
Resumo:
Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
Resumo:
The Capercaillie (Tetrao urogallus L.) is often used as a focal species for landscape ecological studies: the minimum size for its lekking area is 300 ha, and the annual home range for an individual may cover 30 80 km2. In Finland, Capercaillie populations have decreased by approximately 40 85%, with the declines likely to have started in the 1940s. Although the declines have partly stabilized from the 1990s onwards, it is obvious that the negative population trend was at least partly caused by changes in human land use. The aim of this thesis was to study the connections between human land use and Capercaillie populations in Finland, using several spatial and temporal scales. First, the effect of forest age structure on Capercaillie population trends was studied in 18 forestry board districts in Finland, during 1965 1988. Second, the abundances of Capercaillie and Moose (Alces alces L.) were compared in terms of several land-use variables on a scale of 50 × 50 km grids and in five regions in Finland. Third, the effects of forest cover and fine-grain forest fragmentation on Capercaillie lekking area persistence were studied in three study locations in Finland, on 1000 and 3000 m spatial scales surrounding the leks. The analyses considering lekking areas were performed with two definitions for forest: > 60 and > 152 m3ha 1 of timber volume. The results show that patterns and processes at large spatial scales strongly influence Capercaillie in Finland. In particular, in southwestern and eastern Finland, high forest cover and low human impact were found to be beneficial for this species. Forest cover (> 60 m3ha 1 of timber) surrounding the lekking sites positively affected lekking area persistence only at the larger landscape scale (3000 m radius). The effects of older forest classes were hard to assess due to scarcity of older forests in several study areas. Young and middle-aged forest classes were common in the vicinity of areas with high Capercaillie abundances especially in northern Finland. The increase in the amount of younger forest classes did not provide a good explanation for Capercaillie population decline in 1965 1988. In addition, there was no significant connection between mature forests (> 152 m3ha 1 of timber) and lekking area persistence in Finland. It seems that in present-day Finnish landscapes, area covered with old forest is either too scarce to efficiently explain the abundance of Capercaillie and the persistence of the lekking areas, or the effect of forest age is only important when considering smaller spatial scales than the ones studied in this thesis. In conclusion, larger spatial scales should be considered for assessing the future Capercaillie management. According to the proposed multi-level planning, the first priority should be to secure the large, regional-scale forest cover, and the second priority should be to maintain fine-grained, heterogeneous structure within the separate forest patches. A management unit covering hundreds of hectares, or even tens or hundreds of square kilometers, should be covered, which requires regional-level land-use planning and co-operation between forest owners.
Resumo:
It is more and more acknowledged that land-use/cover dynamic change has become a key subject urgently to be dealt with in the study of global environmental change. Supported by the Landsat TM digital images, spatial patterns and temporal variation of land-use change during 1995 -2000 are studied in the paper. According to the land-use dynamic degree model, supported by the 1km GRID data of land-use change and the comprehensive characters of physical, economic and social features, a dynamic regionalization of land-use change is designed to disclose the spatial pattern of land-use change processes. Generally speaking, in the traditional agricultural zones, e.g., Huang-Huai-Hai Plains, Yangtze River Delta and Sichuan Basin, the built-up and residential areas occupy a great proportion of arable land, and in the interlock area of farming and pasturing of northern China and the oases agricultural zones, the reclamation I of arable land is conspicuously driven by changes of production conditions, economic benefits and climatic conditions. The implementation of "returning arable land into woodland or grassland" policies has won initial success in some areas, but it is too early to say that the trend of deforestation has been effectively reversed across China. In this paper, the division of dynamic regionalization of land-use change is designed, for the sake of revealing the temporal and spatial features of land-use change and laying the foundation for the study of regional scale land-use changes. Moreover, an integrated study, including studies of spatial pattern and temporal process of land-use change, is carried out in this paper, which is an interesting try on the comparative studies of spatial pattern on change process and the change process of spatial pattern of land-use change.
Resumo:
In the present study, the land use over Kerala State and its spatial and temporal variations, spatio-temporal variations of water budget elements, climatic shifts, incidence of droughts and the influence of inter-annual fluctuations of rainfall on area. production and yield of selected crops, have been studied in detail. The thesis consists of seven chapters including the introduction. The first section of the Second Chapter deals with the importance of agrocliinatological studies in general and its application in agricultural land use in particular. It also gives an overview of the short term climatic fluctuations, water balance studies, crop weather relationships, land use patterns and various agricultural indices. This includes a detailed review of available literature in this field. The basic concepts. data used and the methodology adopted in the study forms, the second section of this Chapter. The Third Chapter gives the details of the physical features of the State such as the relief, geology, geomorphologysoils, drainage, and vegetation. The agroclimatology of the State is discussed in detail in Chapter Four. The first Section presents annual and seasonal variations of temperature and rainfall of the State along with a discussion on the water balance of the State. The secondSection of this Chapter deals with the influence of rainfall and water balance elements on various crops. The district-wise general land use pattern of theState and its spatio-temporal variations are discussed in Chapter Five. The first Section of Chapter Six gives an overview of the agricultural land use pattern of the State, cropping patterns, cropping intensity, crop combination and their spatio-temporal variations. The inter-annual variability of water balances of various stations of the State computed using the method of Thornthwaite (1948) and Thornthwaite & Mather (1955) is presented in the second Section of Chapter Six. This also includes a discussion of how the climatic shifts have occurred over the State and the influence of variations of climatic and water balance elements on the crops. The Seventh Chapter gives the summary of the work carried out and the results obtained from the study. Interpretations of the results, conclusions and suggestions made,based on the observations of the study are incorporated in this Chapter.
Resumo:
In Oman, during the last three decades, agricultural water use and groundwater extraction has dramatically increased to meet the needs of a rapidly growing population and major changes in lifestyle. This has triggered agricultural land-use changes which have been poorly investigated. In view of this our study aimed at analysing patterns of shortterm land-use changes (2007-2009) in the five irrigated mountain oases of Ash Sharayjah, Al’Ayn, Al’Aqr, Qasha’ and Masayrat ar Ruwajah situated in the northern Oman Hajar mountains of Al Jabal Al Akhdar where competitive uses of irrigation water are particularly apparent. Comprehensive GIS-based field surveys were conducted over three years to record changes in terrace use in these five oases where farmers have traditionally adapted to rain-derived variations of irrigation water supply, e.g. by leaving agricultural terraces of annual crops uncultivated in drought years. Results show that the area occupied with field crops decreased in the dry years of 2008 and 2009 for all oases. In Ash Sharayjah, terrace areas grown with field crops declined from 4.7 ha (32.4 % of total terrace area) in 2007 to 3.1 ha (21.6 %) in 2008 and 3.0 ha (20.5 %) in 2009. Similarly, the area proportion of field crops shrunk in Al’Ayn, Qasha’ and Masayrat from 35.2, 36.3 and 49.6 % in 2007 to 19.8, 8.5 and 41.3 % in 2009, respectively. In Al’Aqr, the area of field crops slightly increased from 0.3 ha (17.0 %) in 2007 to 0.7 (39.1 %) in 2008, and decreased to 0.5 ha (28.8 %) in 2009. During the same period annual dry matter yields of the cash crop garlic in Ash Sharayjah increased from 16.3 t ha-1 in 2007 to 19.8 t ha-1 in 2008 and 18.3 t ha-1 in 2009, while the same crop yielded only 0.4, 1.6 and 1.1 t ha-1 in Masayrat. In 2009, the total estimated agricultural area of the new town of Sayh Qatanah above the five oases was around 13.5 ha. Our results suggest that scarcity of irrigation water as a result of low precipitation and increased irrigation and home water consumption in the new urban settlements above the five oases have led to major shifts in the land-use pattern and increasingly threaten the centuries-long tradition and drought-resilience of agriculture in the oases of the studied watershed.
Resumo:
Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.
Resumo:
The first agricultural societies were established around 10 ka BP and had spread across much of Europe and southern Asia by 5.5 ka BP with resultant anthropogenic deforestation for crop and pasture land. Various studies (e.g. Joos et al., 2004; Kaplan et al., 2011; Mitchell et al., 2013) have attempted to assess the biogeochemical implications for Holocene climate in terms of increased carbon dioxide and methane emissions. However, less work has been done to examine the biogeophysical impacts of this early land use change. In this study, global climate model simulations with Hadley Centre Coupled Model version 3 (HadCM3) were used to examine the biogeophysical effects of Holocene land cover change on climate, both globally and regionally, from the early Holocene (8 ka BP) to the early industrial era (1850 CE). Two experiments were performed with alternative descriptions of past vegetation: (i) one in which potential natural vegetation was simulated by Top-down Representation of Interactive Foliage and Flora Including Dynamics (TRIFFID) but without land use changes and (ii) one where the anthropogenic land use model Kaplan and Krumhardt 2010 (KK10; Kaplan et al., 2009, 2011) was used to set the HadCM3 crop regions. Snapshot simulations were run at 1000-year intervals to examine when the first signature of anthropogenic climate change can be detected both regionally, in the areas of land use change, and globally. Results from our model simulations indicate that in regions of early land disturbance such as Europe and south-east Asia detectable temperature changes, outside the normal range of variability, are encountered in the model as early as 7 ka BP in the June–July–August (JJA) season and throughout the entire annual cycle by 2–3 ka BP. Areas outside the regions of land disturbance are also affected, with virtually the whole globe experiencing significant temperature changes (predominantly cooling) by the early industrial period. The global annual mean temperature anomalies found in our single model simulations were −0.22 at 1850 CE, −0.11 at 2 ka BP, and −0.03 °C at 7 ka BP. Regionally, the largest temperature changes were in Europe with anomalies of −0.83 at 1850 CE, −0.58 at 2 ka BP, and −0.24 °C at 7 ka BP. Large-scale precipitation features such as the Indian monsoon, the Intertropical Convergence Zone (ITCZ), and the North Atlantic storm track are also impacted by local land use and remote teleconnections. We investigated how advection by surface winds, mean sea level pressure (MSLP) anomalies, and tropospheric stationary wave train disturbances in the mid- to high latitudes led to remote teleconnections.
Resumo:
Streamwater is affected by several processes in the watershed including anthropogenic activities that result in changes in water quality as well as in the functioning of these stream ecosystems. Therefore, this work aims to evaluate the concentration of major ions (Ca2+, Mg2+, Na+, K+, NH4+, NO3-, NO2-, Cl-, SO42-, PO43-, HCO3-) in streams in the state of Sao Paulo (southeast Brazil). The sampling sites are located at undisturbed (ombrophilus dense forest, semideciduous forest and savanna - cerrado) and disturbed areas (pasture, urbanization and sugar cane crops). Streamwater chemistry varied according to land use change and, in general, was higher in disturbed sites. Streams located in undisturbed sites at Ribeira de Iguape/Alto Paranapanema watershed (streams 1, 2 and 3) seem to be regulated by soil characteristics, as the disturbed streams located at the same watershed covered by pasture (stream 7) showed high concentration for the most of the variables. Exception to streams located at Pontal do Paranapanema watershed where both disturbed (stream 8) and undisturbed streams (stream 4 and 5) presented similar patterns for almost all variables measured.
Resumo:
Streamwater is affected by several processes in the watershed including anthropogenic activities that result in changes in water quality as well as in the functioning of these stream ecosystems. Therefore, this work aims to evaluate the concentration of major ions (Ca2+, Mg2+, Na+, K+, NH4+, NO3-, NO2-, Cl-, SO4(2-), PO4(3-), HCO3-) in streams in the state of São Paulo (southeast Brazil). The sampling sites are located at undisturbed (ombrophilus dense forest, semideciduous forest and savanna - cerrado) and disturbed areas (pasture, urbanization and sugar cane crops). Streamwater chemistry varied according to land use change and, in general, was higher in disturbed sites. Streams located in undisturbed sites at Ribeira de Iguape/Alto Paranapanema watershed (streams 1, 2 and 3) seem to be regulated by soil characteristics, as the disturbed streams located at the same watershed covered by pasture (stream 7) showed high concentration for the most of the variables. Exception to streams located at Pontal do Paranapanema watershed where both disturbed (stream 8) and undisturbed streams (stream 4 and 5) presented similar patterns for almost all variables measured.
Resumo:
Semi-natural grasslands, biodiversity hotspots in Central-Europe, suffer from the cessation of traditional land-use. Amount and intensity of these changes challenge current monitoring frameworks typically based on classic indicators such as selected target species or diversity indices. Indicators based on plant functional traits provide an interesting extension since they reflect ecological strategies at individual and ecological processes at community levels. They typically show convergent responses to gradients of land-use intensity over scales and regions, are more directly related to environmental drivers than diversity components themselves and enable detecting directional changes in whole community dynamics. However, probably due to their labor- and cost intensive assessment in the field, they have been rarely applied as indicators so far. Here we suggest overcoming these limitations by calculating indicators with plant traits derived from online accessible databases. Aiming to provide a minimal trait set to monitor effects of land-use intensification on plant diversity we investigated relationships between 12 community mean traits, 2 diversity indices and 6 predictors of land-use intensity within grassland communities of 3 different regions in Germany (part of the German ‘Biodiversity Exploratory’ research network). By standardization of traits and diversity measures, use of null models and linear mixed models we confirmed (i) strong links between functional community composition and plant diversity, (ii) that traits are closely related to land-use intensity, and (iii) that functional indicators are equally, or even more sensitive to land-use intensity than traditional diversity indices. The deduced trait set consisted of 5 traits, i.e., specific leaf area (SLA), leaf dry matter content (LDMC), seed release height, leaf distribution, and onset of flowering. These database derived traits enable the early detection of changes in community structure indicative for future diversity loss. As an addition to current monitoring measures they allow to better link environmental drivers to processes controlling community dynamics.
Resumo:
There is increasing evidence that species can evolve rapidly in response to environmental change. However, although land use is one of the key drivers of current environmental change, studies of its evolutionary consequences are still fairly scarce, in particular studies that examine land-use effects across large numbers of populations, and discriminate between different aspects of land use. Here, we investigated genetic differentiation in relation to land use in the annual grass Bromus hordeaceus. A common garden study with offspring from 51 populations from three regions and a broad range of land-use types and intensities showed that there was indeed systematic population differentiation of ecologically important plant traits in relation to land use, in particular due to increasing mowing and grazing intensities. We also found strong land-use-related genetic differentiation in plant phenology, where the onset of flowering consistently shifted away from the typical time of management. In addition, increased grazing intensity significantly increased the genetic variability within populations. Our study suggests that land use can cause considerable genetic differentiation among plant populations, and that the timing of land use may select for phenological escape strategies, particularly in monocarpic plant species.
Resumo:
Phylogenetic diversity (PD) has been successfully used as a complement to classical measures of biological diversity such as species richness or functional diversity. By considering the phylogenetic history of species, PD broadly summarizes the trait space within a community. This covers amongst others complex physiological or biochemical traits that are often not considered in estimates of functional diversity, but may be important for the understanding of community assembly and the relationship between diversity and ecosystem functions. In this study we analyzed the relationship between PD of plant communities and land-use intensification in 150 local grassland plots in three regions in Germany. Specifically we asked whether PD decreases with land-use intensification and if so, whether the relationship is robust across different regions. Overall, we found that species richness decreased along land-use gradients the results however differed for common and rare species assemblages. PD only weakly decreased with increasing land-use intensity. The strength of the relationship thereby varied among regions and PD metrics used. From our results we suggest that there is no general relationship between PD and land-use intensification probably due to lack of phylogenetic conservatism in land- use sensitive traits. Nevertheless, we suggest that depending on specific regional idiosyncrasies the consideration of PD as a complement to other measures of diversity can be useful.
Resumo:
The quantification of CO2 emissions from anthropogenic land use and land use change (eLUC) is essential to understand the drivers of the atmospheric CO2 increase and to inform climate change mitigation policy. Reported values in synthesis reports are commonly derived from different approaches (observation-driven bookkeeping and process-modelling) but recent work has emphasized that inconsistencies between methods may imply substantial differences in eLUC estimates. However, a consistent quantification is lacking and no concise modelling protocol for the separation of primary and secondary components of eLUC has been established. Here, we review differences of eLUC quantification methods and apply an Earth System Model (ESM) of Intermediate Complexity to quantify them. We find that the magnitude of effects due to merely conceptual differences between ESM and offline vegetation model-based quantifications is ~ 20 % for today. Under a future business-as-usual scenario, differences tend to increase further due to slowing land conversion rates and an increasing impact of altered environmental conditions on land-atmosphere fluxes. We establish how coupled Earth System Models may be applied to separate secondary component fluxes of eLUC arising from the replacement of potential C sinks/sources and the land use feedback and show that secondary fluxes derived from offline vegetation models are conceptually and quantitatively not identical to either, nor their sum. Therefore, we argue that synthesis studies should resort to the "least common denominator" of different methods, following the bookkeeping approach where only primary land use emissions are quantified under the assumption of constant environmental boundary conditions.
Resumo:
The fluctuation in water demand in the Redland community of Miami-Dade County was examined using land use data from 2001 and 2011 and water estimation techniques provided by local and state agencies. The data was converted to 30 m mosaicked raster grids that indicated land use change, and associated water demand measured in gallons per day per acre. The results indicate that, first, despite an increase in population, water demand decreased overall in Redland from 2001 to 2011. Second, conversion of agricultural lands to residential lands actually caused a decrease in water demand in most cases while acquisition of farmland by public agencies also caused a sharp decline. Third, conversion of row crops and groves to nurseries was substantial and resulted in a significant increase in water demand in all such areas converted. Finally, estimating water demand based on land use, rather than population, is a more accurate approach.
Resumo:
The interactions among industrial development, land use/cover change (LUCC), and environmental effects in Changshu in the eastern coastal China were analyzed using high-resolution Landsat TM data in 1990, 1995, 2000, and 2006, socio-economic data and water environmental quality monitoring data from research institutes and governmental departments. Three phases of industrial development in Changshu were examined (i.e., the three periods of 1990 to 1995, 1995 to 2000, and 2000 to 2006). Besides industrial development and rapid urbanization, land use/cover in Changshu had changed drastically from 1990 to 2006. This change was characterized by major replacements of farmland by urban and rural settlements, artificial ponds, forested and constructed land. Industrialization, urbanization, agricultural structure adjustment, and rural housing construction were the major socio-economic driving forces of LUCC in Changshu. In addition, the annual value of ecosystem services in Changshu decreased slightly during 1990-2000, but increased significantly during 2000-2006. Nevertheless, the local environmental quality in Changshu, especially in rural areas, has not yet been improved significantly. Thus, this paper suggests an increased attention to fully realize the role of land supply in adjustment of environment-friendly industrial structure and urban-rural spatial restructuring, and translating the land management and environmental protection policies into an optimized industrial distribution and land-use pattern.