962 resultados para Lactate dehydrogenase


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Horses used for the game of polo experience abrupt and frequent changes in exercise intensity. To meet this variable energy demand, the horses use both aerobic and anaerobic pathways in varying proportions and intensities. In this context, there must be a balance between the formation of reactive oxygen species (ROS) and the action of antioxidants to prevent oxidative stress and its consequences. The effect of supplementation with an ADE vitamin complex on oxidative metabolism was evaluated in 18 crossbred horses randomly divided between a treated group (TG) and a control group (CG). The TG animals received the ADE vitamin complex (1mL/50 kg of body weight) by deep intramuscular injection at 30 and 15 days before the game. The CG horses received 10ml of saline by the same administration route and schedule. During the polo match, the animals played for a total of 7.5 min. Blood samples were collected on the same days as the treatments were administered, and immediately before and at 15, 90 and 180 minutes after the game. The concentrations of creatine phosphokinase (CK), lactate dehydrogenase (LDH), lactate, glucose, aspartate aminotransferase (AST), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured in the blood samples. After the game, the TG demonstrated higher levels of AST, lactate and glucose than the CG, suggesting more efficient energy use by the treated animals. The higher GSH and lower lactate levels in the TG before the game suggest the presence of a greater antioxidant supply in the treated animals. The maintenance of the MDA levels indicates that neither of the groups exhibited oxidative stress.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract: Infection with Escherichia coli (E. coli) is a common disease in poultry industry. The use of antibiotics to treat diseases is facing serious criticism and concerns. The medicinal plants may be effective alternatives because of their multiplex activities. The aim of this study was to investigate the effects of cinnamon extract on the levels of liver enzymes, tumor necrosis factor-alpha (TNF-α) and nuclear factor-kappa B (NF-κB) gene expressions in liver of broiler chickens infected with E. coli. Ninety Ross-308 broilers were divided into healthy or E. coli-infected groups, receiving normal or cinnamon extract (in concentrations of 100 or 200mg/kg of food) supplemented diets. E. coli suspension (108cfu) was injected subcutaneously after 12 days cinnamon administration. Seventy-two hours after E. coli injection, the blood samples were taken for biochemical analysis of liver enzymes in serum (spectrophotometrically), and liver tissue samples were obtained for detection of gene expression of inflammatory markers TNF-α and NF-κB, using real-time PCR. Infection with E. coli significantly increased the levels of TNF-α and NF-κB gene expressions as well as some liver enzymes including creatine-kinase (CK), lactate-dehydrogenase (LDH), alanine-transferase (ALT) and aspartate-transferase (AST) as compared with control group (P<0.05). Pre-administration of cinnamon extract in broilers diet (in both concentrations) significantly reduced the tissue levels of TNF-α and NF-κB gene expressions and enzymes CK and ALT in serum of broiler chickens inoculated with E. coli in comparison with E. coli group (P<0.05 and P<0.01). The levels of LDH and AST were significantly decreased only by 200mg/kg cinnamon extract in infected broilers. The level of alkaline-phosphatase (ALP) was not affected in any groups. Pre-administration of cinnamon extract in diets of broiler chickens inoculated with E. coli could significantly reduce the gene expression levels of pro-inflammatory mediators and liver enzymes activities, thereby protecting the liver against this pathologic condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The activity of important glycolytic enzymes (hexokinase, phosphofructokinase, aldolase, phosphohexoseisomerase, pyruvate kinase and lactate dehydrogenase) and glutaminolytic enzymes (phosphate-dependent glutaminase) was determined in the thymus and mesenteric lymph nodes of Wistar rats submitted to protein malnutrition (6% protein in the diet rather than 20%) from conception to 12 weeks after birth. The wet weight (g) of the thymus and mesenteric lymph nodes decreased due to protein malnutrition by 87% (from 0.30 ± 0.05 to 0.04 ± 0.01) and 75% (0.40 ± 0.04 to 0.10 ± 0.02), respectively. The protein content was reduced only in the thymus from 102.3 ± 4.4 (control rats) to 72.6 ± 6.6 (malnourished rats). The glycolytic enzymes were not affected by protein malnutrition, but the glutaminase activity of the thymus and lymph nodes was reduced by half in protein-malnourished rats as compared to controls. This fact may lead to a decrease in the cellularity of the organ and thus in its size, weight and protein content.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Karyological characteristics, i.e., diploid number, chromosome morphology and nucleolus organizer regions (NORs), biochemical characteristics, i.e., electrophoretic analysis of blood hemoglobin and the tissue enzymes lactate dehydrogenase (LDH), malate dehydrogenase (MDH), alcohol dehydrogenase (ADH), and phosphoglucose isomerase (PGI), and physiological characteristics, i.e., relative concentration of hemoglobin and intraerythrocytic concentrations of organic phosphates were analyzed for the species Callophysus macropterus collected from Marchantaria Island (white water system - Solimões River) and Anavilhanas Archipelago (black water system - Negro River). Karyological and biochemical data did not reveal significant differences between specimens collected at the two sites. However, the relative distribution of hemoglobin bands I and III (I = 16.33 ± 1.05 and III = 37.20 ± 1.32 for Marchantaria specimens and I = 6.33 ± 1.32 and III = 48.05 ± 1.55 for Anavilhanas specimens) and levels of intraerythrocytic GTP (1.32 ± 0.16 and 2.76 ± 0.18 for Marchantaria and Anavilhanas specimens, respectively), but not ATP or total phosphate, were significantly different, indicating a physiological adaptation to the environmental conditions of these habitats. It is suggested that C. macropterus specimens from the two collecting sites belong to a single population, and that they adjusted some physiological characteristics to adapt to local environmental conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the effect of crotoxin, the neurotoxic complex from the venom of the South American rattlesnake Crotalus durissus terrificus, on the uptake of ³H-choline in minces of smooth muscle myenteric plexus from guinea pig ileum. In the concentration range used (0.03-1 µM) and up to 10 min of treatment, crotoxin decreased ³H-choline uptake by 50-75% compared to control. This inhibition was time dependent and did not seem to be associated with the disruption of the neuronal membrane, because at least for the first 20 min of tissue exposure to the toxin (up to 1 µM) the levels of lactate dehydrogenase (LDH) released into the supernatant were similar to those of controls. Higher concentrations of crotoxin or more extensive incubation times with this toxin resulted in elevation of LDH activity detected in the assay supernatant. The inhibitory effect of crotoxin on ³H-choline uptake seems to be associated with its phospholipase activity since the equimolar substitution of Sr2+ for Ca2+ in the incubation medium or the modification of the toxin with p-bromophenacyl bromide substantially decreased this effect. Our results show that crotoxin inhibits ³H-choline uptake with high affinity (EC25 = 10 ± 5 nM). We suggest that this inhibition could explain, at least in part, the blocking effect of crotoxin on neurotransmission.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of short-term burst (5 min at 1.8 m/s) swimming and long-term cruiser (60 min at 1.2 m/s) swimming on maximal enzyme activities and enzyme distribution between free and bound states were assessed for nine glycolytic and associated enzymes in tissues of horse mackerel, Trachurus mediterraneus ponticus. The effects of exercise were greatest in white muscle. The activities of phosphofructokinase (PFK), pyruvate kinase (PK), fructose-1,6-bisphosphatase (FBPase), and phosphoglucomutase (PGM) all decreased to 47, 37, 37 and 67%, respectively, during 60-min exercise and all enzymes except phosphoglucoisomerase (PGI) and PGM showed a change in the extent of binding to subcellular particulate fractions during exercise. In red muscle, exercise affected the activities of PGI, FBPase, PFK, and lactate dehydrogenase (LDH) and altered percent binding of only PK and LDH. In liver, exercise increased the PK activity 2.3-fold and reduced PGI 1.7-fold only after 5 min of exercise but altered the percent binding of seven enzymes. Fewer effects were seen in brain, with changes in the activities of aldolase and PGM and in percent binding of hexokinase, PFK and PK. Changes in enzyme activities and in binding interactions with subcellular particulate matter appear to support the altered demands of tissue energy metabolism during exercise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated kidney and lung alterations caused by intercellular adhesion molecule type 1 (ICAM-1) blockade after ischemia and reperfusion of hind limb skeletal muscles. Rats were submitted to ligature of the infrarenal aorta for 6 h. The animals were randomized into three groups of 6 rats each: group I, sacrificed after ischemia; group II, reperfusion for 24 h, and group III, reperfusion for 24 h after receiving monoclonal anti-ICAM-1 antibodies. At the end of the experiment, blood samples were collected for creatinine, lactate dehydrogenase, creatine phosphokinase, potassium, pH and leukocyte counts. Samples were taken from the muscles of the hind limbs and from the kidneys and lungs for histological analysis and measurement of the neutrophil infiltrate by myeloperoxidase staining. The groups did not differ significantly with regard to the laboratory tests. There were no major histological alterations in the kidneys. An intense neutrophil infiltrate in the lungs, similar in all groups, was detected. Myeloperoxidase determination showed that after reperfusion there was significantly less retention of polymorphonuclear neutrophils in the muscles (352 ± 70 vs 1451 ± 235 × 10² neutrophils/mg; P<0.01) and in the kidneys (526 ± 89 vs 852 ± 73 × 10² neutrophils/mg; P<0.01) of the animals that received anti-ICAM-1 before perfusion compared to the group that did not. The use of anti-ICAM-1 antibodies in this experimental model minimized neutrophil influx, thus reducing the inflammatory process, in the muscles and kidneys after ischemia and reperfusion of the hind limbs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypoxia activates endothelial cells by the action of reactive oxygen species generated in part by cyclooxygenases (COX) production enhancing leukocyte transmigration. We investigated the effect of specific COX inhibition on the function of endothelial cells exposed to hypoxia. Mouse immortalized endothelial cells were subjected to 30 min of oxygen deprivation by gas exchange. Acridine orange/ethidium bromide dyes and lactate dehydrogenase activity were used to monitor cell viability. The mRNA of COX-1 and -2 was amplified and semi-quantified before and after hypoxia in cells treated or not with indomethacin, a non-selective COX inhibitor. Expression of RANTES (regulated upon activation, normal T cell expressed and secreted) protein and the protective role of heme oxygenase-1 (HO-1) were also investigated by PCR. Gas exchange decreased partial oxygen pressure (PaO2) by 45.12 ± 5.85% (from 162 ± 10 to 73 ± 7.4 mmHg). Thirty minutes of hypoxia decreased cell viability and enhanced lactate dehydrogenase levels compared to control (73.1 ± 2.7 vs 91.2 ± 0.9%, P < 0.02; 35.96 ± 11.64 vs 22.19 ± 9.65%, P = 0.002, respectively). COX-2 and HO-1 mRNA were up-regulated after hypoxia. Indomethacin (300 µM) decreased COX-2, HO-1, hypoxia-inducible factor-1alpha and RANTES mRNA and increased cell viability after hypoxia. We conclude that blockade of COX up-regulation can ameliorate endothelial injury, resulting in reduced production of chemokines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Agmatine has neuroprotective effects on retinal ganglion cells (RGCs) as well as cortical and spinal neurons. It protects RGCs from oxidative stress even when it is not present at the time of injury. As agmatine has high affinity for various cellular receptors, we assessed protective mechanisms of agmatine using transformed RGCs (RGC-5 cell line). Differentiated RGC-5 cells were pretreated with 100 μM agmatine and consecutively exposed to 1.0 mM hydrogen peroxide (H2O2). Cell viability was determined by measuring lactate dehydrogenase (LDH), and the effects of selective alpha 2-adrenergic receptor antagonist yohimbine (0-500 nM) and N-methyl-D-aspartic acid (NMDA) receptor agonist NMDA (0-100 µM) were evaluated. Agmatine’s protective effect was compared to a selective NMDA receptor antagonist MK-801. After a 16-h exposure to H2O2, the LDH assay showed cell loss greater than 50%, which was reduced to about 30% when agmatine was pretreated before injury. Yohimbine almost completely inhibited agmatine’s protective effect, but NMDA did not. In addition, MK-801 (0-100 µM) did not significantly attenuate the H2O2-induced cytotoxicity. Our results suggest that neuroprotective effects of agmatine on RGCs under oxidative stress may be mainly attributed to the alpha 2-adrenergic receptor signaling pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wnt proteins are involved in tissue development and their signaling pathways play an important role during embryogenesis. Wnt signaling can promote cell survival, which is beneficial for neurons, but could also lead to tumor development in different tissues. The present study investigated the effects of a Wnt protein on the susceptibility of a neural tumor cell line (PC12 cells) to the cytotoxic compounds ferrous sulfate (10 mM), staurosporine (100 and 500 nM), 3-nitropropionic acid (5 mM), and amyloid β-peptide (Aβ25-35; 50 µM). Cells (1 x 10(6) cells/mL) were treated with the Wnt-3a recombinant peptide (200 ng/mL) for 24 h before exposure to toxic insults. The Wnt-3a protein partially protected PC12 cells, with a 6-15% increase in cell viability in the presence of toxic agents, similar to the effect measured using the MTT and lactate dehydrogenase cell viability assays. The Wnt-3a protein increased protein expression of β-catenin by 52% compared to control. These findings suggest that Wnt signaling can protect neural cells against apoptosis induced by toxic agents, which are relevant to the pathogenesis of Alzheimer’s and Huntington’s diseases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min-1·mg protein-1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a "time-efficient" strategy inducing metabolic adaptation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ricinus communis L. is of great economic importance due to the oil extracted from its seeds. Castor oil has been used for pharmaceutical and industrial applications, as a lubricant or coating agent, as a component of plastic products, as a fungicide or in the synthesis of biodiesel fuels. After oil extraction, a castor cake with a large amount of protein is obtained. However, this by-product cannot be used as animal feed due to the presence of toxic (ricin) and allergenic (2S albumin) proteins. Here, we propose two processes for detoxification and allergen inactivation of the castor cake. In addition, we establish a biological test to detect ricin and validate these detoxification processes. In this test, Vero cells were treated with ricin, and cell death was assessed by cell counting and measurement of lactate dehydrogenase activity. The limit of detection of the Vero cell assay was 10 ng/mL using a concentration of 1.6 x 10(5) cells/well. Solid-state fermentation (SSF) and treatment with calcium compounds were used as cake detoxification processes. For SSF, Aspergillus niger was grown using a castor cake as a substrate, and this cake was analyzed after 24, 48, 72, and 96 h of SSF. Ricin was eliminated after 24 h of SSF treatment. The cake was treated with 4 or 8% Ca(OH)2 or CaO, and both the toxicity and the allergenic properties were entirely abolished. A by-product free of toxicity and allergens was obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quercetin (Que), a plant-derived flavonoid, has multiple benefical actions on the cardiovascular system. The current study investigated whether Que postconditioning has any protective effects on myocardial ischemia/reperfusion (I/R) injury in vivo and its potential cardioprotective mechanisms. Male Sprague-Dawley rats were randomly allocated to 5 groups (20 animals/group): sham, I/R, Que postconditioning, Que+LY294002 [a phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway inhibitor], and LY294002+I/R. I/R was produced by 30-min coronary occlusion followed by 2-h reperfusion. At the end of reperfusion, myocardial infarct size and biochemical changes were compared. Apoptosis was evaluated by both TUNEL staining and measurement of activated caspase-3 immunoreactivity. The phosphorylation of Akt and protein expression of Bcl-2 and Bax were determined by Western blotting. Que postconditioning significantly reduced infarct size and serum levels of creatine kinase and lactate dehydrogenase compared with the I/R group (all P<0.05). Apoptotic cardiomyocytes and caspase-3 immunoreactivity were also suppressed in the Que postconditioning group compared with the I/R group (both P<0.05). Akt phosphorylation and Bcl-2 expression increased after Que postconditioning, but Bax expression decreased. These effects were inhibited by LY294002. The data indicate that Que postconditioning can induce cardioprotection by activating the PI3K/Akt signaling pathway and modulating the expression of Bcl-2 and Bax proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle. In the present study, we tested the hypothesis that ischemic postconditioning is effective for salvaging ischemic skeletal muscle resulting from limb ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α. Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group IPO). Each group was divided into subgroups (n=6) according to reperfusion time: immediate (0 h, T0), 1 h (T1), 3 h (T3), 6 h (T6), 12 h (T12), and 24 h (T24). In the IPO group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were carried out before reperfusion. At all reperfusion times (T0-T24), serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) concentrations, were measured in rats after they were killed. Histological and immunohistochemical methods were used to assess the skeletal muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all significantly increased compared to group S, and HIF-1α expression was up-regulated (P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and IL-6 concentrations were significantly decreased, IL-10 concentration was increased, HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological changes were reduced compared to group IR. The present study suggests that ischemic postconditioning can reduce skeletal muscle damage caused by limb ischemia-reperfusion and that its mechanisms may be related to the involvement of HlF-1α in the limb ischemia-reperfusion injury-triggered inflammatory response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary purpose of the current investigation was to develop an elevated muscle fluid level using a human in-vivo model. The secondary purpose was to determine if an increased muscle fluid content could alter the acute muscle damage response following a bout of eccentric exercise. Eight healthy, recreationally active males participated in a cross-over design involving two randomly assigned trials. A hydration trial (HYD) consisting of a two hour infusion of a hypotonic (0.45%) saline at a rate of 20mL/minVl .73m"^ and a control trial (CON), separated by four weeks. Following the infusion (HYD) or rest period (CON), participants completed a single leg isokinetic eccentric exercise protocol of the quadriceps, consisting of 10 sets of 10 repetitions with a one minute rest between each set. Muscle biopsies were collected prior to the exercise, immediately following and at three hours post exercise. Muscle analysis included determination of wet-dry ratios and quantification of muscle damage using toluidine blue staining and light microscopy. Blood samples were collected prior to, immediately post, three and 24 hours post exercise to determine changes in creatine kinase (CK), lactate dehydrogenase (LD), interleukin-6 (IL-6) and Creactive protein (CRP) levels. Results demonstrated an increased muscle fluid volume in the HYD condition following the infusion when compared to the CON condition. Isometric peak torque was significantly reduced following the exercise in both the HYD and CON conditions. There were no significant differences in the number of areas of muscle damage at any of the time points in either condition, with no differences between conditions. CK levels were significantly greater 24hour post exercise compared to pre, immediately and three hours post similarly in both conditions. LD in the HYD condition followed a similar trend as CK with 24 hour levels higher than pre, immediately post and three hours post and LD levels were significantly greater 24 hours post compared to pre levels in the CON condition, with no differences between conditions. A significant main effect for time was observed for CRP (p<0.05) for time, such that CRP levels increased consistently at each subsequent time point. However, CRP and IL-6 levels were not different at any of the measured time points when comparing the two conditions. Although the current investigation was able to successfully increase muscle fluid volume and an increased CK, LD and CRP were observed, no muscle damage was observed following the eccentric exercise protocol in the CON or HYD conditions. Therefore, the hypotonic infusion used in the HYD condition proved to be a viable method to acutely increase muscle fluid content in in-vivo human skeletal muscle.