890 resultados para LOADED NANOCAPSULES
Resumo:
The goal of this thesis is to give information to machine designers about how to design and size sheet metal structures and joints. Generally, the designing object is to lighten structures. To design structures that are light and can carry loads more effectively, designers have to be updated of new manufacturing techniques and new designing methods and criterions. With knowledge of this thesis, a designer can recognize objects and methods plus how and where it is possible to apply these new more effectively load carrying structures. The thesis gives answers to questions of corrosion and material planning, goes into joint types and manufacturing techniques of sheet metal structures. One of the main issues is to develop designers world of ideas to design right kind of products with new lasertechniques.
Resumo:
The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was observed. Finally, all formulations proved to be biocompatible with both ISO compliant L929 fibroblasts and human MG63 osteoblast-like cells.
Resumo:
OBJECTIVES: The aim of this study was to assess the safety of the concurrent administration of a clopidogrel and prasugrel loading dose in patients undergoing primary percutaneous coronary intervention. BACKGROUND: Prasugrel is one of the preferred P2Y12 platelet receptor antagonists for ST-segment elevation myocardial infarction patients. The use of prasugrel was evaluated clinically in clopidogrel-naive patients. METHODS: Between September 2009 and October 2012, a total of 2,023 STEMI patients were enrolled in the COMFORTABLE (Comparison of Biomatrix Versus Gazelle in ST-Elevation Myocardial Infarction [STEMI]) and the SPUM-ACS (Inflammation and Acute Coronary Syndromes) studies. Patients receiving a prasugrel loading dose were divided into 2 groups: 1) clopidogrel and a subsequent prasugrel loading dose; and 2) a prasugrel loading dose. The primary safety endpoint was Bleeding Academic Research Consortium types 3 to 5 bleeding in hospital at 30 days. RESULTS: Of 2,023 patients undergoing primary percutaneous coronary intervention, 427 (21.1%) received clopidogrel and a subsequent prasugrel loading dose, 447 (22.1%) received a prasugrel loading dose alone, and the remaining received clopidogrel only. At 30 days, the primary safety endpoint was observed in 1.9% of those receiving clopidogrel and a subsequent prasugrel loading dose and 3.4% of those receiving a prasugrel loading dose alone (adjusted hazard ratio [HR]: 0.57; 95% confidence interval [CI]: 0.25 to 1.30, p = 0.18). The HAS-BLED (hypertension, abnormal renal/liver function, stroke, bleeding history or predisposition, labile international normalized ratio, elderly, drugs/alcohol concomitantly) bleeding score tended to be higher in prasugrel-treated patients (p = 0.076). The primary safety endpoint results, however, remained unchanged after adjustment for these differences (clopidogrel and a subsequent prasugrel loading dose vs. prasugrel only; HR: 0.54 [95% CI: 0.23 to 1.27], p = 0.16). No differences in the composite of cardiac death, myocardial infarction, or stroke were observed at 30 days (adjusted HR: 0.66, 95% CI: 0.27 to 1.62, p = 0.36). CONCLUSIONS: This observational, nonrandomized study of ST-segment elevation myocardial infarction patients suggests that the administration of a loading dose of prasugrel in patients pre-treated with a loading dose of clopidogrel is not associated with an excess of major bleeding events. (Comparison of Biomatrix Versus Gazelle in ST-Elevation Myocardial Infarction [STEMI] [COMFORTABLE]; NCT00962416; and Inflammation and Acute Coronary Syndromes [SPUM-ACS]; NCT01000701).
Resumo:
The influences of the spray-drying parameters and the type of nanoparticles (nanocapsules or nanospheres) on the characteristics of nanoparticle-coated diclofenac-loaded microparticles were investigated by using a factorial design 3². Gastrointestinal tolerance following oral administration in rats was evaluated. Formulations were selected considering the best yields, the best encapsulation efficiencies and the lowest water contents, presenting surfaces completely coated by nanostructures and a decrease in the surface areas in relation to the uncoated core. In vitro drug release demonstrated the influence of the nanoparticle-coating on the dissolution profiles of diclofenac. Nanocapsule-coated microparticles presented a protective effect on the gastrointestinal mucosa.
Resumo:
In this paper we describe the preparation poly (L-lactide) (PLA) nanocapsules as a drug delivery system for the local anesthetic benzocaine. The characterization and in vitro release properties of the system were investigated. The characterization results showed a polydispersity index of 0.14, an average diameter of 190.1± 3 nm, zeta potential of -38.5 mV and an entrapment efficiency of 73%. The release profile of Benzocaine loaded in PLA nanocapsules showed a significant different behavior than that of the pure anesthetic in solution. This study is important to characterize a drug release system using benzocaine for application in pain treatment.
Resumo:
Semi-hydrogenation of alkynes has industrial and academic relevance on a large scale. To increase the activity, selectivity and lifetime of monometallic catalysts, the development of bimetallic catalysts has been investigated. 1-Heptyne hydrogenation over low-loaded Pd and Ni monometallic and PdNi bimetallic catalysts was studied in liquid phase at mild conditions. XPS results suggest that nickel addition to Pd modifies the electronic state of palladium as nickel loading is increased. Low-loaded Pd catalysts showed the highest selectivities (> 95%). The most active prepared catalyst, PdNi(1%), was more selective than the Lindlar catalyst.
Resumo:
The aims of this study were to formulate calcium-alginate beads containing glibenclamide, characterize the resulting microparticles, evaluate the release characteristics of this type of delivery system in an in vitro dissolution test, and compare it with two commercially available trademarks (Daonil® and Glibetab®). We obtained glibenclamide loaded calcium-alginate beads with a rough surface and a particle size between 150-200 µm. For the in vitro dissolution test Daonil® at 45 min showed a Q > 70%, whereas Glibetab® and glibenclamide calcium-alginate beads a Q < 70%; in spite of that glibenclamide calcium-alginate beads showed significant release properties.
Resumo:
Rice husk silica (RHS) and NaY were used as supports for potassium (K) prepared from acetate buffer (B) and acetate (A) solutions. K loading did not destroy the NaY structure, but it caused a decrease in the surface area; the K species resided in micropores and on the external surface. In contrast, K loading resulted in the collapse and a decrease in the surface area of RHS. It was found that 12K/NaY-B was the most active catalyst for the transesterification of Jatropha seed oil. The minimum K content in K/NaY-B that provided complete conversion of the Jatropha seed oil was 11 wt%, and the biodiesel yield was 77.9%.
Resumo:
Quetiapine is an atypical antipsychotic used to treat schizophrenia. However, despite great interest for its chronic therapeutic use, quetiapine has some important side effects such as weight gain induction. The development of a quetiapine nanocarrier can potentially target the drug into central nervous system, resulting in a reduction of systemic side effects and improved patient treatment. In the present work, a simple liquid chromatography/ultraviolet detection (LC/UV) analytical method was developed and validated for quantification of total quetiapine content in lipid core nanocapsules as well as for determination of incorporation efficiency. An algorithm proposed by Oliveira et al. (2012) was applied to characterize the distribution of quetiapine in the pseudo-phases of the nanocarrier, leading to a better understanding of the quetiapine nanoparticles produced. The analytical methodology developed was specific, linear in the range of 0.5 to 100 µg mL−1 (r2 > 0,99), and accurate and precise (R.S.D < ±5%). The absolute recovery of quetiapine from the nanoparticles was approximately 98% with an incorporation efficiency of approximately 96%. The results indicated that quetiapine was present in a type III distribution according to the algorithm, and was mainly located in the core of the nanoparticle because of its logD in the formulation pH (6.86 ± 0.4).
Resumo:
In the present study we evaluated the nature of angiotensin receptors involved in the antidiuretic effect of angiotensin-(1-7) (Ang-(1-7)) in water-loaded rats. Water diuresis was induced in male Wistar rats weighing 280 to 320 g by water load (5 ml/100 g body weight by gavage). Immediately after water load the rats were treated subcutaneously with (doses are per 100 g body weight): 1) vehicle (0.05 ml 0.9% NaCl); 2) graded doses of 20, 40 or 80 pmol Ang-(1-7); 3) 200 nmol Losartan; 4) 200 nmol Losartan combined with 40 pmol Ang-(1-7); 5) 1.1 or 4.4 nmol A-779; 6) 1.1 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 7) 4.4 nmol A-779 combined with graded doses of 20, 40 or 80 pmol Ang-(1-7); 8) 95 nmol CGP 42112A, or 9) 95 nmol CGP 42112A combined with 40 pmol Ang-(1-7). The antidiuretic effect of Ang-(1-7) was associated with an increase in urinary Na+ concentration, an increase in urinary osmolality and a reduction in creatinine clearance (CCr: 0.65 ± 0.04 ml/min vs 1.45 ± 0.18 ml/min in vehicle-treated rats, P<0.05). A-779 and Losartan completely blocked the effect of Ang-(1-7) on water diuresis (2.93 ± 0.34 ml/60 min and 3.39 ± 0.58 ml/60 min, respectively). CGP 42112A, at the dose used, did not modify the antidiuretic effect of Ang-(1-7). The blockade produced by Losartan was associated with an increase in CCr and with an increase in sodium and water excretion as compared with Ang-(1-7)-treated rats. When Ang-(1-7) was combined with A-779 there was an increase in CCr and natriuresis and a reduction in urine osmolality compared with rats treated with Ang-(1-7) alone. The observation that both A-779, which does not bind to AT1 receptors, and Losartan blocked the effect of Ang-(1-7) suggests that the kidney effects of Ang-(1-7) are mediated by a non-AT1 angiotensin receptor that is recognized by Losartan.
Resumo:
Intravesical chemotherapy is an important part of the treatment for superficial bladder cancer. However, the response to it is limited and its side effects are extensive. Functional single-walled carbon nanotubes (SWNT) have shown promise for tumor-targeted accumulation and low toxicity. In the present study, we performed in vivo and in vitro investigations to determine whether SWNT-based drug delivery could induce high tumor depression in rat bladder cancer and could decrease the side effects of pirarubicin (tetrahydropyranyl-adriamycin, THP). We modified SWNT with phospholipid-branched polyethylene glycol and constructed an SWNT-THP conjugate via a cleavable ester bond. The cytotoxicity of SWNT-THP against the human bladder cancer cell line BIU-87 was evaluated in vitro. Rat bladder cancer in situ models constructed by N-methyl-N-nitrosourea intravesical installation (1 g/L, 2 mg/rat once every 2 weeks for 8 weeks) were used for in vivo evaluation of the cytotoxicity of SWNT and SWNT-THP. Specific side effects in the THP group including urinary frequency (N = 12), macroscopic hematuria (N = 1), and vomiting (N = 7) were identified; however, no side effects were observed with SWNT-THP treatment. Flow cytometry was used to assess the cytotoxicity in vitro and in vivo. Results showed that SWNT alone did not yield significant tumor depression compared to saline (1.74 ± 0.56 and 1.23 ± 0.42%) in vitro. SWNT-THP exhibited higher tumor depression than THP-saline in vitro (74.35 ± 2.56 and 51.24 ± 1.45%) and in vivo (52.46 ± 2.41 and 96.85 ± 0.85%). The present findings indicate that SWNT delivery of THP for the treatment of bladder cancer leads to minimal side effects without loss of therapeutic efficacy. Therefore, this nanotechnology may play a crucial role in the improvement of intravesical treatment of bladder cancer.
Resumo:
The application of nanotechnology to medicine can provide important benefits, especially in oncology, a fact that has resulted in the emergence of a new field called Nanooncology. Nanoparticles can be engineered to incorporate a wide variety of chemotherapeutic or diagnostic agents. A nanocapsule is a vesicular system that exhibits a typical core-shell structure in which active molecules are confined to a reservoir or within a cavity that is surrounded by a polymer membrane or coating. Delivery systems based on nanocapsules are usually transported to a targeted tumor site and then release their contents upon change in environmental conditions. An effective delivery of the therapeutic agent to the tumor site and to the infiltrating tumor cells is difficult to achieve in many cancer treatments. Therefore, new devices are being developed to facilitate intratumoral distribution, to protect the active agent from premature degradation and to allow its sustained and controlled release. This review focuses on recent studies on the use of nanocapsules for cancer therapy and diagnosis.
Resumo:
Lipid micro and nanoparticles have been extensively investigated as carriers for hydrophobic bioactives in food systems because they can simultaneously increase the dispersibility of these lipophilic substances and help improve their bioavailability. In this study, lipid microparticles of babacu oil and denatured whey protein isolate were produced, and their ability to protect quercetin against degradation was evaluated over 30 days of storage. Additionally, the lipid microparticles were subjected to the typical stress conditions of food processing (presence of sucrose, salt, and thermal stresses), and their physico-chemical stability was monitored. The data show that the babacu microparticles efficiently avoided the oxidation of quercetin because 85% of the initial amount of the flavonoid was preserved after 30 days. The particles were notably stable up to a temperature of 70 °C for 10 minutes at relatively high concentrations of salt and sucrose. The type of stirring (mechanical or magnetic) also strongly affected the stability of the dispersions.
Resumo:
Faculté de Pharmacie
Resumo:
Poor bioavailability and poor pharmacokinetic characteristics are some of the leading causes of drug development failure. Therefore, poorly-soluble drugs, fragile proteins or nucleic acid products may benefit from their encapsulation in nanosized vehicles, providing enhanced solubilisation, protection against degradation, and increased access to pathological compartments. A key element for the success of drug-loaded nanocarriers (NC) is their ability to either cross biological barriers themselves or allow loaded drugs to traverse them to achieve optimal pharmacological action at pathological sites. Depending on the mode of administration, NC may have to cross different physiological barriers in their journey towards their target. In this review, the crossing of biological barriers by passive targeting strategies will be presented for intravenous delivery (vascular endothelial lining, particularly for tumour vasculature and blood-brain barrier targeting), oral administration (gastrointestinal lining) and upper airway administration (pulmonary epithelium). For each specific barrier, background information will be provided on the structure and biology of the tissues involved as well as available pathways for nano-objects or loaded drugs (diffusion and convection through fenestration, transcytosis, tight junction crossing, etc.). The determinants of passive targeting − size, shape, surface chemistry, surface patterning of nanovectors − will be discussed in light of current results. Perspectives on each mode of administration will be presented. The focus will be on polymeric nanoparticles and dendrimers although advances in liposome technology will be also reported as they represent the largest body in the drug delivery literature.