899 resultados para LDPE Blends
Resumo:
A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with M A≈1/2MB. By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. © 2014 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
用WAXD、TBA、DSC等方法对PP/EPO共混体系的结晶结构和相容性进行了研究。WAXD方法测定表明PP/EPO共混体系的结晶度随EPO组份含量的增加而降低,晶胞参数值与组份比无关,使用Hosemann次晶模型法计算了此体系的第二类晶格畸变和应力畸变,表明衍射峰的宽化主要是由第二类晶格畸变引起的。根据DSC和TBA实验得出在所有组成PP/EPO共混体系是不相容的,但在非晶区可能部分相容。采用WAXD、DDV、DSC等方法对LDPE/EPO共混体系的结晶结构和相容性进行了研究,用Ruland方法计算的结晶度值随EPO组份含量的增加而降低,晶胞参数值与组份比无关。使用方差——范围函数方法计算了LDPE/EPO共混体系的(110)和(200)晶面的微晶大小(L_(hkL))和晶格畸变参数(g_t)。L_(hkL)和g_t值随EPO组份的增加而下降。从DDV-II粘弹谱仪测得的共混体系的谱图可看出,在β松驰附近,EPO的β转变随LDPE的加入量增加向低温方向移动,这是由于渗透到EPO非晶中的LDPE非晶部分影响了EPO链段运动所致。从LDPE/EPO共混体系的DSC图谱可知,只存在一个熔融峰,这说明很可能LDPE与EPO形成了共晶,从共混物的Tm、Tc可知,随EPO组份增加,熔点下降,结晶温度下降,纯EPO显示出高于LDPE及共混物的Tm.WAXD法证明,这是由于EPO中PE长序列贡献的结果。为了进一步证实EPO中少量结晶相与LDPE中晶相形成了共晶,我们做了萃取实验,结果表明了共晶的存在。由于各种聚乙烯的非晶相间是任意混容的,大部分为非晶部分的EPO中少量结晶相又与LDPE的结晶相形成了共晶,因盯LDPE/EPO是相容的共混体系。用DSC方法研究了LDPE/EPO共混体系的结晶动力学,对LDPE/EPO共混体系的等温结晶动力学研究表明,共混物是三维生长的异相成核。共混体系的平衡熔点随EPO含量的增加而降低,采用Lauritzen提出的Z判断方法,得出共混体系在各个结晶温度下的结晶过程都是以方式(II)进行的。采用Avrami方程和Ozawa方程的新的处理非等温结晶动力学的方程,研究了LDPE/EPO共混体系的非等温结晶动力学,得到了描述非等温结晶过程的一些基本参数。
Resumo:
Morphologies, crystallization behavior and mechanical properties of polypropylene(PP)/syndiotactic 1,2-polybutadiene(s-1,2 PB) blends were investigated. Morphology observation shows the well dispersed domains of s-1,2 PB in PP matrix with the rather small domain sizes from 0.1 to 0.5 mu m when the s-1,2 PB content increases from 5% to 20% (mass fraction) in the blends, and the phase structure tends to become co-continuous as s-1,2 PB content further increases.
Resumo:
Two sets of graft copolymers were prepared by grafting glycidyl methacrylate (GMA) or ally] (3-isocyanate-4-tolyl) carbamate (TAI) onto ethylene/propylene/diene terpolymer (EPDM) in an internal mixer. These graft copolymers were used as the compatibilizer to prepare the thermoplastic elastomers (TPEs) containing 50 wt%, of poly(butylene terephthalate), PBT, 30 wt% of compatibilizer, and 20 wt% of nitrile-butadiene rubber, NBR. The indirect, two-step mixer process was chosen for dynamic curing.
Resumo:
Molecular weight dependence of phase separation behavior of the Poly (ethylene oxide) (PEO)/Poly(ethylene oxide-block-dimethylsiloxane) (P(EO-b-DMS)) blends was investigated by both experimental and theoretical methods. The cloud point curves of PEO/P(EO-b-DMS) blends were obtained by turbidity method. Based on Sanchez-Lacombe lattice fluid theory (SLLFT), the adjustable parameter, epsilon*(12)/k (quantifying the interaction energy between different components), was evaluated by fitting the experimental data in phase diagrams. To calculate the spinodals, binodals, and the volume changes of mixing for these blends, three modified combining rules of the scaling parameters for the block copolymer were introduced.
Resumo:
Compatibilized blends of poly(vinylidene fluoride) (PVDF) and thermoplastic polyurethane (TPU) were developed using maleated PVDF (PVDF-g-MA). Excellent compatibilization between PVDF and TPU was demonstrated by theological, morphological, and mechanical measurements. The introduction of PVDF-g-MA into the PVDF/TPU blends caused an increase in viscosity and storage modulus. Much finer morphology was clearly observed by SEM. The tensile tests showed that the tensile strength and ultimate elongation achieved a significant improvement with addition of PVDF-g-MA.
Resumo:
In this study, melt blends of poly(butylene terephthalate) (PBT) with epoxy resin were characterized by dynamic mechanical analysis, differential scanning calorimetry, tensile testing, Fourier transform infrared spectroscopy, and wide-angle X-ray diffraction. The results indicate that the presence of epoxy resin influenced either the mechanical properties of the PBT/epoxy blends or the crystallization of PBT. The epoxy resin was completely miscible with the PBT matrix. This was beneficial to the improvement of the impact performance of the PBT/epoxy blends.
Novel Method for Preparation of Polypropylene Blends with High Melt Strength by Reactive Compounding
Resumo:
Ultrafine full-vulcanized polybutadiene rubber(UFBR) with particle sizes of ca. 50-100 nm were used for modifying mechanical and processing performances of polypropylene(PP) with PP-g-maleic anhydride(PP-g-MA) as a compatibilizer for enhancing the interfacial adhesion between the two components. The morphology, dynamical rheology response and mechanical properties of the blends were characterized by means of SEM, rheometer and tensile test, respectively.
Resumo:
We study the interplay between microphase assembly and macrophase separation in A/B/AB ternary polymer blends by examining the free energy of localized fluctuation structures (micelles or droplets), with emphasis on the thermodynamic relationship between swollen micelles (microemulsion) and the macrophase-separated state, using self-consistent field theory and an extended capillary model. Upon introducing homopolymer B into a micelle-forming binary polymer blend A/AB, micelles can be swollen by B. A small amount of component B (below the A-rich binodal of macrophase coexistence) will not affect the stability of the swollen micelles. A large excess of homopolymer, B, will induce a microemulsion failure and lead to a macrophase separation.
Resumo:
Blends of poly(lactic acid)(PLA) and thermoplastic acetylated starch(ATPS) were prepared by means of the melt mixing method. The results show that PLA and ATPS were partially miscible, which was confirmed with the measurement of T-g by dynamic mechanical analysis(DMA) and differrential scanning calorimetry(DSC). The mechanical and thermal properties of the blends were improved. With increasing the ATPs content, the elongation at break and impact strength were increased. The elongation at break increased from 5% of neat PLA to 25% of the blend PLA/ATPS40. It was found that the cold crystallization behavior of PLA changed evidently by addition of ATPS. The cold crystallization temperature(T-cc) of each of PLA/ATPS blends was found to shift to a lower temperature and the width of exothermic peak became narrow compared with that of neat PLA.
Resumo:
A new blend system consisting of an amorphous sulfonated poly[bis(benzimidazobenzisoquinolinones)] (SPBIBI) and the semi-crystalline poly(vinylidene fluoride) (PVDF) was prepared for proton exchange membranes. The miscibility behavior of a series of blends of SPBIBI with PVDF at various weight ratios was studied by WXRD, DSC and FTIR. The properties of the blend membranes were investigated, and it was found that the introduction of PVDF in the SPBIBI matrix altered the morphological structure of the blend membranes, which led to the formation of improved connectivity channels. For instance, the conductivity of the blend membrane containing 10 wt% PVDF displayed the highest proton conductivity (i.e., 0.086 S cm(-1)) at room temperature, a value almost twofold that of the pristine SPBIBI membranes (i.e., 0.054S cm(-1)) under identical conditions.
Resumo:
BACKGROUND: How to promote the formation of the gamma-form in a certain propylene-ethylene copolymer (PPR) under atmospheric conditions is significant for theoretical considerations and practical applications. Taking the epitaxial relationship between the alpha-form and gamma-form into account, it is expected that incorporation of some extrinsic alpha-crystals, developed by propylene homopolymer (PPH), can enhance the crystallization of the gamma-form of the PPR component in PPR/PPH blends.RESULTS: The PPH component in the blends first crystallizes from the melt, and its melting point and crystal growth rate decrease with increasing PPR fraction. On the other hand, first-formed alpha-crystals of the PPH component can induce the lateral growth of PPR chains on themselves, indicated by sheaf-like crystal morphology and positive birefringence, which is in turn responsible for enhanced crystallization of the gamma-form of the PPR component.