997 resultados para LDL-R
Resumo:
beta-Lactam antimicrobials are known to have a low concentration/therapeutic response. However, extending the period in which beta-lactam are free in the plasma does directly influence therapeutic outcomes. The objective of this study was to evaluate the influence of Pluronic (R) F68 on the antimicrobial activity of ceftazidime when admixed with aminophylline in parenteral solutions by the evaluation of its minimal inhibitory concentration (MIC) within 24 h. Ceftazidime, aminophylline, and Pluronics (R) F68 were evaluated using the MIC method against Escherichia coli and Pseudomonas aeruginosa, with these compounds individually and associated in the same parenteral solutions. When Pluronics (R) F68 was admixtured with ceftazidime alone or with ceftazidime and aminophylline, it was possible to observe lower MIC values not only at 24 h but also at 0 h for both microorganisms. This indicates that Pluronics (R) F68 may be able to enhance ceftazidime antimicrobial activity in the presence or absence of aminophylline. This fact suggests that Pluronics (R) F68 can be applied to allow the administration of ceftazidime under continuous infusion in parenteral solutions, beneficiating hospital pharmacotherapy. It may also be possible to reduce ceftazidime doses in formulations achieving the same therapeutic results. (C) 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 100:715-720, 2011
Resumo:
Background. Oxidative stress is a significant contributor to cardiovascular diseases (CVD) in haemodialysis (HD) patients, predisposing to the generation of oxidized low-density lipoprotein (oxLDL) or electronegatively charged LDL subfraction. Antioxidant therapy such as alpha-tocopherol acts as a scavenger of lipid peroxyl radicals attenuating the oxidative stress, which decreases the formation of oxLDL. The present study was designed to investigate the influence of the alpha-tocopherol supplementation on the concentration of electronegative low-density lipoprotein [LDL(-)], a minimally oxidized LDL, which we have previously described to be high in HD patients. Methods. Blood samples were collected before and after 120 days of supplementation by alpha-tocopherol (400 UI/day) in 19 stable HD patients (50 +/- 7.8 years; 9 males). The concentrations of LDL(-) in blood plasma [using an anti-LDL- human monoclonal antibody (mAb)] and the anti-LDL(-) IgG auto-antibodies were determined by ELISA. Calculation of body mass index (BMI) and measurements of waist circumference (WC), triceps skin folds (TSF) and arm muscle area (AMA) were performed. Results. The plasma alpha-tocopherol levels increased from 7.9 mu M (0.32-18.4) to 14.2 mu M (1.22-23.8) after the supplementation (P = 0.02). The mean concentration of LDL(-) was reduced from 570.9 mu g/mL (225.6-1241.0) to 169.1 mu g/mL (63.6-621.1) (P < 0.001). The anti-LDL(-) IgG auto-antibodies did not change significantly after the supplementation. The alpha-tocopherol supplementation also reduced the total cholesterol and LDL-C levels in these patients, from 176 +/- 42.3 mg/dL to 120 +/- 35.7 mg/dL (P < 0.05) and 115.5 +/- 21.4 mg/dL to 98.5 +/- 23.01 mg/dL (P < 0.001), respectively. Conclusion. The oral administration of alpha-tocopherol in HD patients resulted in a significant decrease in the LDL(-), total cholesterol and LDL-C levels. This effect may favour a reduction in cardiovascular risk in these patients, but a larger study is required to confirm an effect in this clinical setting.
Resumo:
In this work we evaluated the photophysical and in vitro properties of Foscan (R), a second-generation photosensitizer drug (PS) widely used in systemic clinical protocols for cancer therapy based on Photodynamic Therapy (PDT). We employed biodegradable nanoemulsions (NE) as a colloidal vehicle of the oil/water (o/w) type focusing in topical administration of Foscan (R) and other photosensitizer drugs. This formulation was obtained and stabilized by the methodology described by Tabosa do Egito et al.,(30) based on the mixture of two phases: an aqueous solution and an organic medium consisting of nonionic surfactants and oil. The photodynamic potential of the drug incorporated into the NE was studied by steady-state and time-resolved spectroscopic techniques. We also analyzed the in vitro biological behavior carried out in mimetic biological environment protocols based on the animal model. After topical application in a skin animal model, we evaluated the Foscan (R)/NE diffusion flux into the skin layers (stratum corneum and epidermis + dermis) by classical procedures using Franz Diffusion cells. Our results showed that the photophysical properties of PS were maintained after its incorporation into the NE when compared with homogeneous organic medium. The in vitro assays enabled the determination of an adequate profile for the interaction of this system in the different skin layers, with an ideal time lag of 6 h after topical administration in the skin model. The Foscan (R) diffusion flux (J) was increased when this PS was incorporated into the NE, if compared with its flux in physiological medium. These parameters demonstrated that the NE can be potentially applied as a drug delivery system (DDS) for Foscan (R) in both in vitro and in vivo assays, as well as in future clinical applications involving topical skin cancer PDT.
Resumo:
The minimal irreducible representations of U-q[gl(m|n)], i.e. those irreducible representations that are also irreducible under U-q[osp(m|n)] are investigated and shown to be affinizable to give irreducible representations of the twisted quantum affine superalgebra U-q[gl(m|n)((2))]. The U-q[osp(m|n)] invariant R-matrices corresponding to the tensor product of any two minimal representations are constructed, thus extending our twisted tensor product graph method to the supersymmetric case. These give new solutions to the spectral-dependent graded Yang-Baxter equation arising from U-q[gl(m|n)((2))], which exhibit novel features not previously seen in the untwisted or non-super cases.
Resumo:
The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.
Resumo:
Seven cysteine-rich repeats form the ligand-binding region of the low-density lipoprotein (LDL) receptor. Each of these repeats is assumed to bind a calcium ion, which is needed for association of the receptor with its ligands, LDL and beta-VLDL. The effects of metal ions on the folding of the reduced N-terminal cysteine-rich repeat have been examined by using reverse-phase high-performance liquid chromatography to follow the formation of fully oxidized isomers with different disulfide connectivities. in the absence of calcium many of the 15 possible isomers formed on oxidation, whereas in its presence the predominant product at equilibrium had the native disulfide bond connectivities. Other metals were far less effective at directing disulfide bond formation: Mn2+ partly mimicked the action of Ca2+, but Ba2+, Sr2+, and Mg2+ had little effect. This metal-ion specificity was also observed in two-dimensional H-1 NMR spectral studies: only Ca2+ induced the native three-dimensional fold. The two paramagnetic ions, Gd3+ and Mn2+, and Cd2+ did not promote adoption of a well-defined structure, and the two paramagnetic ions did not displace calcium ions. The location of calcium ion binding sites in the repeat was also explored by NMR spectroscopy. The absence of chemical shift changes for the side chain proton resonances of Asp26, Asp36, and Glu37 from pH 3.9 to 6.8 in the presence of calcium ions and their proximal location in the NMR structures implicated these side chains as calcium ligands. Deuterium exchange NMR experiments also revealed a network of hydrogen bonds that stabilizes the putative calcium-binding loop.
Resumo:
The ligand-binding domain of the low-density lipoprotein (LDL) receptor is comprised of seven tandemly repeated ligand-binding modules, each being approximately 40 amino acids long and containing six conserved cysteine residues. We have expressed and characterized a concatemer of the first two modules (LB1 and LB2) of the human LDL receptor. Oxidative folding of the recombinant concatemer (rLB(1-2)), in the presence of calcium ions, gave a single dominant isomer with six disulfide bonds. Peptic cleavage of the short Linker region that connects the last cysteine residue of LB1 and the first cysteine residue of LB2 yielded two discrete fragments, thus excluding the presence of intermodule disulfide bonds. The N-terminal module, LB1, reacted with a conformation-specific monoclonal antibody (IgG-C7) made to LB1 in the native LDL receptor. From this, we concluded that the first module was correctly folded, with the same set of disulfide bonds as LB1 of the LDL receptor. The disulfide bond connections of LB2 were identified from mass spectral analysis of fragments formed by digestion of the C-terminal peptic fragment with elastase. These data showed that the disulfide bonds of LB2 connected Cys(I) and Cys(III), Cys(II) and Cys(V), and Cys(IV) and Cys(VI). This pattern is identical to that found for recombinant LB1 and LB2. The concatemer has two high-affinity calcium-binding sites, one per module. An analysis of the secondary chemical shifts of C alpha protons shows that the conformations of LB1 and LB2 in the concatemer are very similar to those of the individual modules, with no evidence for strong interactions between the two modules.
Resumo:
Two sponge's belonging to the family Latrunculiidae (Negombata and Latrunculia sp.) collected during scientific trawling operations in Prydz Bay, Antarctica, and by scuba off Port Campbell, Victoria, have yielded a new antibacterial pyrroloiminoquinone, discorhabdin R (2). The structure was assigned as 2 on the basis of detailed, spectroscopic analysis and comparison with the known co-metabolite discorhabdin B (3).
Resumo:
This paper has investigated the electrochemical oxidation of glyphosate herbicide (GH) on RuO(2) and IrO(2) dimensionally stable anode (DSA (R)) electrodes. Electrolysis was achieved under galvanostatic control as a function of pH, GH concentration, supporting electrolyte, and current density. The influence of the oxide composition on GH degradation seems to be significant in the absence of chloride; Ti/Ir(0.30)Sn(0.70)O(2) is the best electrode material to oxidize GH. GH oxidation is favored at low pH values. The use of chloride medium increases the oxidizing power and the influence of the oxide composition is meaningless. At 30 mA cm(-2) and 4 h of electrolysis, complete GH removal from the electrolyzed solution has been obtained. In chloride medium, application of 50 mA cm(-2) leads to virtually total mineralization ( release of phosphate ions = 91%) for all the evaluated oxide materials. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The electrochemical degradation of different glyphosate herbicide formulations on RuO(2) and IrO(2) DSA(A (R)) electrodes is investigated. Parameters that could influence the formation of organochloride compounds during electrolysis are studied. The effects of chloride concentration, electrodic composition, current density, and electrolysis time are reported. The influence of the oxide composition on herbicide degradation seems to be almost insignificant; however, there is a straight relationship between anode composition and organic halides formation. Commercial herbicide formulations have lower degradation rates and lead to the formation of a larger quantities of organochloride compounds. In high chloride concentrations, there is a significant increase in organic mineralization, and the relationship between chloride concentration and organic halides formation is direct. Only in low chloride medium investigated the organochloride concentration obtained was below the limit values allowed in Brazil. The determination of organic halides absorbable (AOX) during electrolysis increases significantly with the applied current. Even during long-term electrolysis, a large amount of organochloride compounds is formed.