982 resultados para LDH and PepX
Resumo:
Blood serum and egg-white protein samples from individuals representing seven colonies of Larusargentatus, and four colonies of Sterna hirundo were electrophoretically analysed to determine levels of genetic variability and to assess the utility of polymorphic loci as genetic markers. Variability occurred at five co-dominant autosomal loci. S. hirundo protein polymorphism occurred at the Est-5 and the Oest-l loci, while nineteen loci were monomorphic. L. argentatus samples were monomorphic at seventeen loci and polymorphic at the Ldh-A and the Alb loci. Intergeneric differences existed at the Oalb and the Ldh-A loci. Although LDH-A100 from both species possessed identical electrophoretLc mobilities, the intergeneric differences were expressed as a difference in enzyme the'ITIlostabilities. Geographical distribution of alleles and genetic divergence estimates suggest ~ hirundo population panmixis,at least at the sampled locations. The h argentatus gene pool appears relatively heterogeneous with a discreet Atlantic Coast population and a Great Lakes demic population. These observed population structures may be maintained by the relative amount of gene flow occurring within and among populations. Mass ringing data coupled to reproductive success information and analysis of dispersal trends appear to validate this assumption. Similar results may be generated by either selection or both small organism and low locus sample sizes. To clarify these results and to detect the major factor(s) affecting the surveyed portions of the genome, larger sample sizes in conjunction with precise eco-demographic data are required.
Resumo:
Deoxynivalenol (DON) is a mycotoxin produced by Fusarium spp. Among monogastric farm animals, swine are the most susceptible to DON as it markedly reduces feed intake and decreases weight gain. DON has also been shown to increase susceptibility to viral infections; therefore the objective of this study was to investigate in vitro impact of DON on porcine reproductive and respiratory syndrome virus (PRRSV). Permissive cells were infected or not with PRRSV and were treated with increasing concentrations of DON. Cell survival and mortality were evaluated by determining the number of viable cells with a tetrazolium compound and by measuring lactate dehydrogenase (LDH) release, respectively. Virus titration and antiviral cytokines mRNA expression were evaluated by quantitative PCR. DON significantly affected the survival of noninfected cells in a dose dependent manner. However, DON concentrations between 140 and 280 significantly increased the survival of cells infected with PRRSV. These concentrations significantly decreased PRRSV replication by inducing a pro-inflammatory cytokines environment and an early activation of apoptosis, which in turn seem to interrupt viral replication. For the first time, this study showed that DON had significant effects on the survival of PRRSV infected cells and on virus replication, in a dose dependent manner.
Resumo:
Methylparathion (MP) is an organophosphorus insecticide used world wide in agriculture due to its high activity against a broad spectrum of insect pests. The aim of the study is to understand the effect of methylparathion on the lipid peroxidation, detoxifying and antioxidant enzymes namely catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione Stransferase (GST), total reduced glutathione (GSH), lipid peroxidation (LPO), acetylcholinesterase (AChE) and disease diagnostic marker enzymes in liver, sarcoplasmic (SP) and myofirbirllar (MF) proteins in muscles, lipids and histopathlogical changes in various organs of Labeo rohita of size 75 i 6g at lethal and sublethal level of exposure. The probit analysis showed that the lethal concentration (LC 50%) for 24, 48, 72 and 96h were 15.5mg/L, 12.3mg/L, 11.4mg/L and 10.2mg/L respectively which is much higher compared to the LC50 for juvenile fish. The LPO level and GST activity increased five folds and two folds respectively on exposure to methylparathion at 10.2 mg/L and the level of the enzymes increased, on sub lethal exposure beyond 0.25mg/L. AChE activity was inhibited by 74% at a concentration of 1.8mg/L and 90% at 5.4mg/L. The disease diagnostic marker enzymes AST, ALT, ALP and LDH increased by about 2, 3 ,3 and 2 folds respectively at pesticide concentration of 10.2mg/L when compared to control. On sub lethal exposure, however the enzymes did not show any significant changes up to 0.5mg/L. At a concentration of 10.2 mg/L, there was a three fold increase in myofibrillar proteins while the increase in sarcoplasmic protein was above 1.5 fold. On sub lethal exposure, significant alteration was noticed up to 30 days up to 1mg/L of methylparathion concentration. Further exposure up to 45 days increased sarcoplasmic proteins (upto 0.5mg/L). ln the case of myofibrillar proteins, noticeable changes were observed at 1mg/L concentration right from 15th day. The cholesterol content in brain tissues increased by about 27% at methylparathion concentration of 5.4 mglL. However at 0.25mg/L sub lethal concentration, no significant alteration was observed in enzyme activity, muscle proteins, lipids and histopathology of the tissues. The results suggest that methylparathion has the potential to induce oxidative stress in fish, and that liver, muscle and brains are more sensitive organs of Labeo rohita, with poor antioxidant potentials at higher concentrations of the pesticide. The various parameters studied in this investigation can also be used as biomarkers of methylparathion exposure.
Resumo:
Hydrogen sulfide (H(2)S) has recently been proposed as an endogenous mediator of inflammation and is present in human synovial fluid. This study determined whether primary human articular chondrocytes (HACs) and mesenchymal progenitor cells (MPCs) could synthesize H(2)S in response to pro-inflammatory cytokines relevant to human arthropathies, and to determine the cellular responses to endogenous and pharmacological H(2)S. HACs and MPCs were exposed to IL-1β, IL-6, TNF-α and lipopolysaccharide (LPS). The expression and enzymatic activity of the H(2)S synthesizing enzymes cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) were determined by Western blot and zinc-trap spectrophotometry, respectively. Cellular oxidative stress was induced by H(2)O(2), the peroxynitrite donor SIN-1 and 4-hydroxynonenal (4-HNE). Cell death was assessed by 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Mitochondrial membrane potential (DCm) was determined in situ by flow cytometry. Endogenous H(2) S synthesis was inhibited by siRNA-mediated knockdown of CSE and CBS and pharmacological inhibitors D,L-propargylglycine and aminoxyacetate, respectively. Exogenous H(2)S was generated using GYY4137. Under basal conditions HACs and MPCs expressed CBS and CSE and synthesized H(2)S in a CBS-dependent manner, whereas CSE expression and activity was induced by treatment of cells with IL-1β, TNF-α, IL-6 or LPS. Oxidative stress-induced cell death was significantly inhibited by GYY4137 treatment but increased by pharmacological inhibition of H(2)S synthesis or by CBS/CSE-siRNA treatment. These data suggest CSE is an inducible source of H(2)S in cultured HACs and MPCs. H(2)S may represent a novel endogenous mechanism of cytoprotection in the inflamed joint, suggesting a potential opportunity for therapeutic intervention.
Resumo:
P>The genesis and progression of diabetes occur due in part to an uncontrolled inflammation profile with insulin resistance, increased serum levels of free fatty acids (FFA), proinflammatory cytokines and leucocyte dysfunction. In this study, an investigation was made of the effect of a 3-week moderate exercise regimen on a treadmill (60% of VO(2max), 30 min/day, 6 days a week) on inflammatory markers and leucocyte functions in diabetic rats. The exercise decreased serum levels of tumour necrosis factor (TNF)-alpha (6%), cytokine-induced neutrophil chemotactic factor 2 alpha/beta (CINC-2 alpha/beta) (9%), interleukin (IL)-1 beta (34%), IL-6 (86%), C-reactive protein (CRP) (41%) and FFA (40%) in diabetic rats when compared with sedentary diabetic animals. Exercise also attenuated the increased responsiveness of leucocytes from diabetics when compared to controls, diminishing the reactive oxygen species (ROS) release by neutrophils (21%) and macrophages (28%). Exercise did not change neutrophil migration and the proportion of neutrophils and macrophages in necrosis (loss of plasma membrane integrity) and apoptosis (DNA fragmentation). Serum activities of creatine kinase (CK) and lactate dehydrogenase (LDH) were not modified in the conditions studied. Therefore, physical training did not alter the integrity of muscle cells. We conclude that moderate physical exercise has marked anti-inflammatory effects on diabetic rats. This may be an efficient strategy to protect diabetics against microorganism infection, insulin resistance and vascular complications.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Obesity is rampant in modern society and growth hormone (GH) could be useful as adjunct therapy to reduce the obesity-induced cardiovascular damage. To investigate GH effects on obesity, initially 32 male Wistar rats were divided into two groups (n = 16): control (C) was fed standard-chow and water and hyper-caloric (H) was fed hypercaloric chow and 30% sucrose in its drinking water. After 45 days, both C and H groups were divided into two subgroups (n = 8): C + PL was fed standard-chow, water and received saline subcutaneously; C + GH was fed standard-chow, water, and received 2 mg/kg/day GH subcutaneously; H + PL was fed hypercaloric diet, 30% sucrose in its drinking water, and received saline subcutaneously; and H + GH was fed hypercaloric diet, 30% sucrose in its drinking water, and received GH subcutaneously. After 75 days of total experimental period, H + PL rats were considered obese, having higher body weight, body mass index, Lee-index, and atherogenic index (AI) compared to C + PL. Obesity was accompanied by enhanced myocardial lipid hydroperoxide (LH) and lactate dehydrogenase (LDH), as well of depressed energy expenditure (RMR) and oxygen consumption(VO(2))/body weight. H + GH rats had higher fasting RMR, as well as lower AI and myocardial LH than H + PL. Comparing C + GH with C + PL, despite no effects on morphometric parameters, lipid profile, myocardial LH, and LDH activity, GH enhanced fed RMR and myocardial pyruvate dehydrogenase. In conclusion, the present study brought new insights into the GH effects on obesity related cardiovascular damage demonstrating, for the first time, that GH regulated cardiac metabolic pathways, enhanced energy expenditure and improved the lipid profile in obesity condition. Growth hormone in standard fed condition also offered promising therapeutic value enhancing pyruvate-dehydrogenase activity and glucose oxidation in cardiac tissue, thus optimizing myocardial energy metabolism.
Resumo:
Several evidences point for beneficial effects of growth hormone (GH) in heart failure (HF). Taking into account that HF is related with changes in myocardial oxidative stress and in energy generation from metabolic pathways, it is important to clarify whether GH increase or decrease myocardial oxidative stress and what is its effect on energetic metabolism in HF condition. Thus, this study investigated the effects of two different doses of GH on energetic metabolism and oxidative stress in myocardium of rats with HF. Male Wistar rats (n = 25) were submitted to aortic stenosis (AS). The HF was evidenced by tachypnea and echocardiographic criteria around 28 weeks of AS. The rats were then randomly divided into three groups: (HF) with HF, treated with saline (0.9% NaCl); (HF-GHI), treated with 1 mk/kg/day recombinant human growth hormone (rhGH), and (HF-GH2) treated with 2 mg/kg/day rhGH. GH was injected, subcutaneously, daily for 2 weeks. A control group (sham; n = 12), with the same age of the others rats was evaluated to confirm data for AS. HF had lower IGF-I (insulin-like growth factor-I) than sham-operated rats, and both GH treatments normalized IGF-I level. HF-GH1 animals had lower lipid hydroperoxide (LH), LH/total antioxidant substances (TAS) and glutathione-reductase than HF. Glutathione peroxidase (GSH-Px), hydroxyacyl coenzyme-A dehydrogenase, lactate dehydrogenase(LDH) were higher in HF-GH1 than in HF. HF-GH2 compared with HF, had increased LH/TAS ratio, as well as decreased oxidized glutathione and LDH activity. Comparing the two GH doses, GSH-Px, superoxide dismutase and LDH were lower in HF-GH2 than in HF-GHI. In conclusion, GH effects were dose-dependent and both tested doses did not aggravate the heart dysfunction. The higher GH dose, 2 mg/kg exerted detrimental effects related to energy metabolism and oxidative stress. The lower dose, 1 mg/kg GH exerted beneficial effects enhancing antioxidant defences, reducing oxidative stress and improving energy generation in myocardium of rats with heart failure. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Propolis is a resinous substance produced by honeybees that possesses many biological activities, such as antitumor, antioxidant, antimicrobial, anti-inflammatory, and immunomodulatory, among others. The purpose of the present study was to investigate the biochemical profile of propolis-treated rats to observe whether propolis might lead to side effects after administration. Three different treatments were analyzed: (1) rats were treated with different concentrations of propolis (1, 3 and 6 mg/kg/day) during 30 days; (2) rats were treated with I mg/kg/day of ethanolic or water extracts of propolis (EEP, WEP) during 30 days; (3) rats were treated with I mg/kg/day of ethanolic extract of propolis during 90 and 150 days. Our results demonstrated no alterations in the seric levels of cholesterol, HDL-cholesterol, total lipids, triglycerides and in the specific activity of aminotransferases (AST) and lactic dehydrogenase (LDH) of propolis-treated groups when compared to controls. on the basis of our findings, since propolis does not induce any significant change in seric parameters, it is claimed that long-term administration of propolis might not have any cardiac injury. (c) 2005 Elsevier B.V.. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We report the synthesis and characterization of organic-inorganic hybrid materials: Zn-2-Al-LDHs (layered double hydroxides) containing 3-(1H-pyrrol-1-yl)-propanoate and 7-(1H-pyrrol-l-yl)-heptanoate as the interlayer anions. The LDHs were synthesized by the co-precipitation method at constant pH followed by hydrothermal treatment for 72 h. The materials were characterized by PXRD, C-13 CP-MAS NMR, TGA, and ESR. The basal spacing found by PXRD technique is coincident with the formation of bilayers of the intercalated anions. The solid state C-13 NMR showed that the interlayered anions remain identical after intercalation. ESR data suggest that the monomers connect each other in a limited number of guests when a thermal treatment is applied. The inorganic LDH sheets delay the temperature of degradation of the monomers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The contamination of water by metal compounds is a worldwide environmental problem. This study was undertaken to evaluate the impact of short-term cadmium exposure on metabolic patterns of the freshwater fish Oreochromis niloticus. The fish were exposed to 320, 640, 1280 and 2560 mug/l sublethal concentrations of Cd++ (CdCl2) in water for 7 days. The specific activities of the enzymes phosphofructo kinase (PFK-E.C.2.7.1.11.), lactate dehydrogenase (LDH-E.C.1.1.1.27.) and creatine kinase (CK-E.C.2.7.3.2.) were decreased in white muscle after cadmium treatments, indicating decreases in the capacity of glycolysis in this tissue. Cadmium exposure induced increased glucose concentration in white muscle of fish. on the other hand, cadmium exposure at sublethal concentrations increased phosphofructo kinase and LDH in red muscle of fish. Cadmium significantly decreased total protein concentrations in liver and white muscle regardless of tissue glycogen levels. The data suggest that cadmium acts as a stressor, leading to metabolic alterations similar to those observed in starvation. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The contamination of water by metal compounds is a worldwide environmental problem. Concentrations of metals are widely related to biochemical values which are used in disease diagnosis due to environmental toxicity. The acute combined effects of cadmium and nickel on biochemical parameters were determined and compared with those of Cd2+ or Ni2+ alone in rats. Male adult rats were given drinking solutions of CdCl2 [Cd(II) cation, 100 mg/liter] or NiSO4 [Ni(II) cation, 100 mg/liter]. For the combined treatment, the animals (Ni+Cd) received both Ni(II)) cation (100 mg/liter) and Cd(II) cation (100 mg/liter). Nickel treatment induced increased alanine transaminase (ALT) activity and hepatotoxicity, but not renal injury. In contrast, cadmium exposure produced hepatic, renal and myocardial damage, characterized by increased creatinine, total and direct bilirubin concentrations and increased ALT and lactate dehydrogenase (LDH) activities. The combined effect Ni-Cd is less toxic than cadmium alone, suggesting antagonism between these toxicants. The toxicity of nickel and cadmium, alone and in combination, decreased Cu-Zn superoxide dismutase (SOD) activity and increased lipoperoxide formation. (C) 1998 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Studies on conjugated linoleic acid ingestion and its effect on cardiac tissue are necessary for the safe utilization of this compound as supplement for weight loss. Male Wistar 24-rats were divided into four groups (n = 6):(C)given standard chow, water and 0.5 ml saline, twice a week by gavage; (C-CLA)receiving standard chow, water and 0.5 ml of conjugated linoleic acid, twice a week, by gavage; (S)given standard chow, saline by gavage, and 30% sucrose in its drinking water; (S-CLA)receiving standard chow, 30% sucrose in its drinking water and conjugated linoleic acid. After 42 days of treatment S rats had obesity with increased abdominal-circumference, dyslipidemia, oxidative stress and myocardial lower citrate synthase(CS) and higher lactate dehydrogenase(LDH) activities than C. Conjugated linoleic acid had no effects on morphometric parameters in C-CLA, as compared to C, but normalized morphometric parameters comparing S-CLA with S. There was a negative correlation between abdominal adiposity and resting metabolic rate. Conjugated linoleic acid effect, enhancing fasting-VO2/surface area, postprandial-carbohydrate oxidation and serum lipid hydroperoxide resembled to that of the S group. Conjugated linoleic acid induced cardiac oxidative stress in both fed conditions, and triacylglycerol accumulation in S-CLA rats. Conjugated linoleic acid depressed myocardial LDH comparing C-CLA with C, and beta-hydroxyacyl-coenzyme-A dehydrogenase/CS ratio, comparing S-CLA with S. In conclusion, dietary conjugated linoleic acid supplementation for weight loss can have long-term effects on cardiac health. Conjugated linoleic acid, isomers c9, t11 and t10, c12 presented undesirable pro-oxidant effect and induced metabolic changes in cardiac tissue. Nevertheless, despite its effect on abdominal adiposity in sucrose-rich diet condition, conjugated linoleic acid may be disadvantageous because it can lead to oxidative stress and dyslipidemic profile. (c) 2007 Elsevier B.V All rights reserved.