981 resultados para LANDSAT THEMATIC MAPPER


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote sensing - the acquisition of information about an object or phenomenon without making physical contact with the object - is applied in a multitude of different areas, ranging from agriculture, forestry, cartography, hydrology, geology, meteorology, aerial traffic control, among many others. Regarding agriculture, an example of application of this information is regarding crop detection, to monitor existing crops easily and help in the region’s strategic planning. In any of these areas, there is always an ongoing search for better methods that allow us to obtain better results. For over forty years, the Landsat program has utilized satellites to collect spectral information from Earth’s surface, creating a historical archive unmatched in quality, detail, coverage, and length. The most recent one was launched on February 11, 2013, having a number of improvements regarding its predecessors. This project aims to compare classification methods in Portugal’s Ribatejo region, specifically regarding crop detection. The state of the art algorithms will be used in this region and their performance will be analyzed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo apresenta um mapa da cobertura vegetal da planície de inundação do Rio Amazonas entre as cidades de Parintins (AM) e Almeirim (PA), com base em imagens Landsat-MSS adquiridas entre 1975 e 1981. O processamento digital dessas imagens envolveu a transformação para imagens-fração de vegetação, solo e água escura (sombra), seguido da aplicação de técnicas de segmentação e classificação por região. O mapa resultante da classificação foi organizado em quatro classes de cobertura do solo: floresta de várzea, vegetação não-florestal de várzea, solo exposto e água aberta. A precisão do mapa foi estimada a partir de dois tipos de informações coletadas em campo: 1) pontos de descrição: para validação das classes de cobertura não sujeitas a grandes alterações, como é o caso dos corpos d'água permanentes, e identificação de indicadores dos tipos de cobertura original presentes na paisagem na ocasião da obtenção das imagens (72 pontos); 2) entrevistas com moradores antigos para a recuperação da memória sobre a cobertura vegetal existente há 30 anos (44 questionários). Ao todo foram coletadas informações em 116 pontos distribuídos ao longo da área de estudo. Esses pontos foram utilizados para calcular o Índice Kappa de concordância entre os dados de campo e o mapa resultante da classificação automática, cujo valor (0,78) indica a boa qualidade do mapa de cobertura vegetal da várzea. Os resultados mostram que a região possuía uma cobertura florestal de várzea de aproximadamente 8.650 km2 no período de aquisição das imagens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

20.00% 20.00%

Publicador:

Resumo:

É feita a análise de áreas com diferentes classes de declividade (A = 0-3%, B = 3-8%, C = 8-16% e D = 16-30%) sscom a fina1idade de se verificar a potencialidade de imagens TM/LANDSAT, na escala 1:100.000, para planejamento agrícola. Devido à ausência de visão tridimensional, o trabalho baseia-se nas relações quantitativas entre índices dedrenagem (freqüência de rios e densidade de drenagem) determinados a partir das imagens, e expressão do relevo (declividade média) extraída de cartas planialtimétricas, na escala 1:50.000. Fotografias aéreas na escala 1:35.000 são utilizadas para fins comparativos. Conclui-se que o uso dessas imagens para mapear classes de declividade através do padrão de drenagem é viável, embora as características regionais o tenham limitado para diferenciar mais facilmente áreas com declividades A e B de áreas com declividades C e D.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land cover classification is a key research field in remote sensing and land change science as thematic maps derived from remotely sensed data have become the basis for analyzing many socio-ecological issues. However, land cover classification remains a difficult task and it is especially challenging in heterogeneous tropical landscapes where nonetheless such maps are of great importance. The present study aims to establish an efficient classification approach to accurately map all broad land cover classes in a large, heterogeneous tropical area of Bolivia, as a basis for further studies (e.g., land cover-land use change). Specifically, we compare the performance of parametric (maximum likelihood), non-parametric (k-nearest neighbour and four different support vector machines - SVM), and hybrid classifiers, using both hard and soft (fuzzy) accuracy assessments. In addition, we test whether the inclusion of a textural index (homogeneity) in the classifications improves their performance. We classified Landsat imagery for two dates corresponding to dry and wet seasons and found that non-parametric, and particularly SVM classifiers, outperformed both parametric and hybrid classifiers. We also found that the use of the homogeneity index along with reflectance bands significantly increased the overall accuracy of all the classifications, but particularly of SVM algorithms. We observed that improvements in producer’s and user’s accuracies through the inclusion of the homogeneity index were different depending on land cover classes. Earlygrowth/degraded forests, pastures, grasslands and savanna were the classes most improved, especially with the SVM radial basis function and SVM sigmoid classifiers, though with both classifiers all land cover classes were mapped with producer’s and user’s accuracies of around 90%. Our approach seems very well suited to accurately map land cover in tropical regions, thus having the potential to contribute to conservation initiatives, climate change mitigation schemes such as REDD+, and rural development policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ireland is one of the smallest countries in Europe and occupies the most westerly, peripheral position. Geographically, the entire island is comprised of 32 counties, 26 of which make up the Republic of Ireland, (commonly referred to as the South), and 6 of which go to make up Northern Ireland (usually called the North), which forms part of the United Kingdom. This report is concerned with the Republic of Ireland only, which will be referred to as Ireland in the remainder of this report for ease of reading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The report Closing the Gap for Immigrant Students: Policies, Practice and Performance will be placed on the Electronic Discussion Group (EDG) on 12 February for countries to review the extent to which their comments on the first draft have been integrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Despite the increasing incidences of the publication of assessment frameworks intending to establish the "standards" of the quality of qualitative research, the research conducted using such empirical methods are still facing difficulties in being published or recognised by funding agencies. Methods: We conducted a thematic content analysis of eight frameworks from psychology/psychiatry and general medicine. The frameworks and their criteria are then compared against each other. Findings: The results illustrated the difficulties in reaching consensus on the definition of quality criteria. This showed the differences between the frameworks from the point of views of the underlying epistemology and the criteria suggested. Discussion: The aforementioned differences reflect the diversity of paradigms implicitly referred to by the authors of the frameworks, although rarely explicitly mentioned in text. We conclude that the increase in qualitative research and publications has failed to overcome the difficulties in establishing shared criteria and the great heterogeneity of concepts raises methodological and epistemological problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researchers working in the field of global connectivity analysis using diffusion magnetic resonance imaging (MRI) can count on a wide selection of software packages for processing their data, with methods ranging from the reconstruction of the local intra-voxel axonal structure to the estimation of the trajectories of the underlying fibre tracts. However, each package is generally task-specific and uses its own conventions and file formats. In this article we present the Connectome Mapper, a software pipeline aimed at helping researchers through the tedious process of organising, processing and analysing diffusion MRI data to perform global brain connectivity analyses. Our pipeline is written in Python and is freely available as open-source at www.cmtk.org.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho teve como objetivo estabelecer um método para a utilização de dados espectrais, obtidos em laboratório e imagens do Landsat 5, no reconhecimento e discriminação de três classes de solos do estado de São Paulo. Foram coletadas amostras de solo e obtidos os dados de reflectância por espectrorradiômetro em laboratório como padrão de um Latossolo Vermelho distroférrico (LVdf), um Argissolo Vermelho-Amarelo (PVA) e Neossolo Quartzarênico (RQ). Foram extraídos dados de reflectância das imagens, com os quais se efetuou a classificação digital pelo classificador Spectral Angular Mapper. As curvas espectrais obtidas por espectrorradiômetro em laboratório mostraram três padrões distintos de comportamento espectral, baseados nas diferenças da forma das curvas, feições de absorção dos minerais do solo e na intensidade de reflectância. O LVdf apresentou menor albedo em virtude da textura argilosa e maiores teores de Fe, ao contrário dos solos mais arenosos PVA e RQ. As bandas de absorção características da caulinta (2.200 nm), OH- e água (1.400 e 1.900 nm) ocorreram em todos os solos. Solos arenosos, como o RQ, apresentaram uma curva espectral com tendência positiva. A linha do solo mostrou distinção espectral, tanto com dados orbitais como terrestres, indicando que cada solo tem uma tendência individual. Os padrões espectrais obtidos em laboratório foram importantes para a eficiência do método na detecção dos mesmos nas imagens de satélite. Os solos avaliados podem ser discriminados e reconhecidos pela interpretação quantitativa em imagens. O método mostrou-se eficiente como auxílio no mapeamento de solos no nível semidetalhado de alta intensidade.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Por medio de técnicas de tratamiento de imágenes digitales se realiza un estudio de los efectos producidos por una inundación ocurrida a finales del año 1982 en el valle del río Segre, en Catalunya, a partir de la información multiespectral captada por el sensor TM del satélite LANDSAT-4. Utilizando un programa de clasificación no supervisada basado en la distancia euclídea, se diferencian cuatro tipos de suelo o de cubiertas en el rea de estudio (3.8 x 2.3 km). Se efecta un análisis cuantitativo de la calidad de los resultados, usando como referencia la información obtenida en un estudio de campo. Este análisis muestra un alto grado de correspondencia entre el mapa de campo (verdad terreno) y la cartografía realizada a partir de los datos multiespectrales.