959 resultados para LABELED NITROGEN


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In most agroecosystems, nitrogen (N) is the most important nutrient limiting plant growth. One management strategy that affects N cycling and N use efficiency (NUE) is conservation agriculture (CA), an agricultural system based on a combination of minimum tillage, crop residue retention and crop rotation. Available results on the optimization of NUE in CA are inconsistent and studies that cover all three components of CA are scarce. Presently, CA is promoted in the Yaqui Valley in Northern Mexico, the country´s major wheat-producing area in which from 1968 to 1995, fertilizer application rates for the cultivation of irrigated durum wheat (Triticum durum L.) at 6 t ha-1 increased from 80 to 250 kg ha-1, demonstrating the high intensification potential in this region. Given major knowledge gaps on N availability in CA this thesis summarizes the current knowledge of N management in CA and provides insights in the effects of tillage practice, residue management and crop rotation on wheat grain quality and N cycling. Major aims of the study were to identify N fertilizer application strategies that improve N use efficiency and reduce N immobilization in CA with the ultimate goal to stabilize cereal yields, maintain grain quality, minimize N losses into the environment and reduce farmers’ input costs. Soil physical and chemical properties in CA were measured and compared with those in conventional systems and permanent beds with residue burning focusing on their relationship to plant N uptake and N cycling in the soil and how they are affected by tillage and N fertilizer timing, method and doses. For N fertilizer management, we analyzed how placement, time and amount of N fertilizer influenced yield and quality parameters of durum and bread wheat in CA systems. Overall, grain quality parameters, in particular grain protein concentration decreased with zero-tillage and increasing amount of residues left on the field compared with conventional systems. The second part of the dissertation provides an overview of applied methodologies to measure NUE and its components. We evaluated the methodology of ion exchange resin cartridges under irrigated, intensive agricultural cropping systems on Vertisols to measure nitrate leaching losses which through drainage channels ultimately end up in the Sea of Cortez where they lead to algae blooming. A throughout analysis of N inputs and outputs was conducted to calculate N balances in three different tillage-straw systems. As fertilizer inputs are high, N balances were positive in all treatments indicating the risk of N leaching or volatilization during or in subsequent cropping seasons and during heavy rain fall in summer. Contrary to common belief, we did not find negative effects of residue burning on soil nutrient status, yield or N uptake. A labeled fertilizer experiment with urea 15N was implemented in micro-plots to measure N fertilizer recovery and the effects of residual fertilizer N in the soil from summer maize on the following winter crop wheat. Obtained N fertilizer recovery rates for maize grain were with an average of 11% very low for all treatments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cryosurgery is an efficient therapeutic technique used to treat benign and malignant cutaneous diseases. The primary active mechanism of cryosurgery is related to vascular effects on treated tissue. After a cryosurgical procedure, exuberant granulation tissue is formed at the injection site, probably as a result of angiogenic stimulation of the cryogen and inflammatory response, particularly in endothelial cells. To evaluate the angiogenic effects of freezing, as part of the phenomenon of healing rat skin subjected to previous injury. Two incisions were made in each of the twenty rats, which were divided randomly into two groups of ten. After 3 days, cryosurgery with liquid nitrogen was performed in one of incisions. The rats' samples were then collected, cut and stained to conduct histopathological examination, to assess the local angiogenesis in differing moments and situations. It was possible to demonstrate that cryosurgery, in spite of promoting cell death and accentuated local inflammation soon after its application, induces quicker cell proliferation in the affected tissue and maintenance of this rate in a second phase, than in tissue healing without this procedure. These findings, together with the knowledge that there is a direct relationship between mononuclear cells and neovascularization (the development of a rich system of new vessels in injury caused by cold), suggest that cryosurgery possesses angiogenic stimulus, even though complete healing takes longer to occur. The significance level for statistical tests was 5% (p<0,05).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the (15)N:(14)N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in (15)N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ(15)N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ(15)N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, to obtain lipids from microalgae has been the object of extensive research, since it is viewed as a promising feedstock for biodiesel production, especially when compared with crops such as soybean and sunflower, in terms of theoretical performance. The reduction of nutrient availability in culture media, especially nitrogen, stresses the microorganisms and affects cell growth, thus inducing lipid accumulation. This is an interesting step in biodiesel feedstock obtention from microalgae and should be better understood. In this study, four levels of nitrogen concentration in the BG-11 culture medium were evaluated in the growth of the chlorophycean microalga Desmodesmus sp. Both cell growth and lipid content were monitored over 7 days of cultivation, which yielded a final cell density of 33 × 10(6) cells mL(-1) with an initial NaNO3 concentration of 750 mg L(-1) in the medium and a maximum lipid content of 23 % with total nitrogen starvation. It was observed that the microalgae presented high lipid accumulation in the fourth day of cultivation with nitrogen starvation, although with moderate cell growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects were assessed of two energy sources in concentrate (ground grain corn vs. citrus pulp) and two nitrogen sources (soybean meal vs. urea) on rumen metabolism in four buffaloes and four zebu cattle (Nellore) with rumen cannula and fed in a 4 × 4 Latin square design with feeds containing 60% sugar cane. Energy supplements had no effect on the rumen ammonia concentration in cattle, but ground grain corn promoted higher ammonia level than citrus pulp in buffalo. Urea produced higher ammonia level than soybean meal in both animal species. On average, the buffaloes maintained a lower rumen ammonia concentration (11.7 mg/dL) than the cattle (14.5 mg/dL). Buffaloes had lower production of acetic acid than cattle (58.7 vs. 61.6 mol/100 mol) and higher of propionic acid (27.4 vs. 23.6 mol/100 mol). There was no difference in the butyric acid production between the buffaloes (13.6 mol/100 mol) and cattle (14.8 mol/100 mol) and neither in the total volatile fatty acids concentration (82.5 vs. 83.6 mM, respectively). The energy or nitrogen sources had no effect on rumen protozoa count in either animal species. The zebu cattle had higher rumen protozoa population (8.8 × 10(5)/mL) than the buffaloes (6.1 × 10(5)/mL). The rumen protozoa population differed between the animal species, except for Dasytricha and Charonina. The buffaloes had a lower Entodinium population than the cattle (61.0 vs 84.9%, respectively) and a greater percentage of species belonging to the Diplodiniinae subfamily than the cattle (28.6 vs. 1.4%, respectively). In cattle, ground corn is a better energy source than citrus pulp for use by Entodinium and Diplodiniinae. In the buffaloes, the Entodinium are favored by urea and Diplodiniinae species by soybean meal.