1000 resultados para Kotzebue Sound


Relevância:

20.00% 20.00%

Publicador:

Resumo:

I. The attenuation of sound due to particles suspended in a gas was first calculated by Sewell and later by Epstein in their classical works on the propagation of sound in a two-phase medium. In their work, and in more recent works which include calculations of sound dispersion, the calculations were made for systems in which there was no mass transfer between the two phases. In the present work, mass transfer between phases is included in the calculations.

The attenuation and dispersion of sound in a two-phase condensing medium are calculated as functions of frequency. The medium in which the sound propagates consists of a gaseous phase, a mixture of inert gas and condensable vapor, which contains condensable liquid droplets. The droplets, which interact with the gaseous phase through the interchange of momentum, energy, and mass (through evaporation and condensation), are treated from the continuum viewpoint. Limiting cases, for flow either frozen or in equilibrium with respect to the various exchange processes, help demonstrate the effects of mass transfer between phases. Included in the calculation is the effect of thermal relaxation within droplets. Pressure relaxation between the two phases is examined, but is not included as a contributing factor because it is of interest only at much higher frequencies than the other relaxation processes. The results for a system typical of sodium droplets in sodium vapor are compared to calculations in which there is no mass exchange between phases. It is found that the maximum attenuation is about 25 per cent greater and occurs at about one-half the frequency for the case which includes mass transfer, and that the dispersion at low frequencies is about 35 per cent greater. Results for different values of latent heat are compared.

II. In the flow of a gas-particle mixture through a nozzle, a normal shock may exist in the diverging section of the nozzle. In Marble’s calculation for a shock in a constant area duct, the shock was described as a usual gas-dynamic shock followed by a relaxation zone in which the gas and particles return to equilibrium. The thickness of this zone, which is the total shock thickness in the gas-particle mixture, is of the order of the relaxation distance for a particle in the gas. In a nozzle, the area may change significantly over this relaxation zone so that the solution for a constant area duct is no longer adequate to describe the flow. In the present work, an asymptotic solution, which accounts for the area change, is obtained for the flow of a gas-particle mixture downstream of the shock in a nozzle, under the assumption of small slip between the particles and gas. This amounts to the assumption that the shock thickness is small compared with the length of the nozzle. The shock solution, valid in the region near the shock, is matched to the well known small-slip solution, which is valid in the flow downstream of the shock, to obtain a composite solution valid for the entire flow region. The solution is applied to a conical nozzle. A discussion of methods of finding the location of a shock in a nozzle is included.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic recorders were used to document black drum (Pogonias cromis) sound production during their spawning season in southwest Florida. Diel patterns of sound production were similar to those of other sciaenid fishes and demonstrated increased sound levels from the late afternoon to early evening—a period that lasted up to 12 hours during peak season. Peak sound production occurred from January through March when water temperatures were between 18° and 22°C. Seasonal trends in sound production matched patterns of black drum reproductive readiness and spawning reported previously for populations in the Gulf of Mexico. Total acoustic energy of nightly chorus events was estimated by integration of the sound pressure amplitude with duration above a threshold based on daytime background levels. Maximum chorus sound level was highly correlated with total acoustic energy and was used to quantitatively represent nightly black drum sound production. This study gives evidence that long-term passive acoustic recordings can provide information on the timing and location of black drum reproductive behavior that is similar to that provided by traditional, more costly methods. The methods and results have broad application for the study of many other fish species, including commercially and recreationally valuable reef fishes that produce sound in association with reproductive behav

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fjord estuaries are common along the northeast Pacific coastline, but little information is available on fish assemblage structure and its spatiotemporal variability. Here, we examined changes in diversity metrics, species biomasses, and biomass spectra (the distribution of biomass across body size classes) over three seasons (fall, winter, summer) and at multiple depths (20 to 160 m) in Puget Sound, Washington, a deep and highly urbanized fjord estuary on the U.S. west coast. Our results indicate that this fish assemblage is dominated by cartilaginous species (spotted ratfish [Hydrolagus colliei] and spiny dogfish [Squalus acanthias]) and therefore differs fundamentally from fish assemblages found in shallower estuaries in the northeast Pacific. Diversity was greatest in shallow waters (<40 m), where the assemblage was composed primarily of flatfishes and sculpins, and lowest in deep waters (>80 m) that are more common in Puget Sound and that are dominated by spotted ratf ish and seasonally (fall and summer) by spiny dogfish. Strong depth-dependent variation in the demersal fish assemblage may be a general feature of deep fjord estuaries and indicates pronounced spatial variability in the food web. Future comparisons with less impacted fjords may offer insight into whether cartilaginous species naturally dominate these systems or only do so under conditions related to human-caused ecosystem degradation. Information on species distributions is critical for marine spatial planning and for modeling energy flows in coastal food webs. The data presented here will aid these endeavors and highlight areas for future research in this important yet understudied system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish species of warmwater origin appear in northeastern U.S. coastal waters in the late summer and remain until late fall when the temperate waters cool. The annual abundance and species composition of warm-water species is highly variable from year to year, and these variables may have effects on the trophic dynamics of this region. To understand this variability, records of warm-water fish occurrence were examined in two neighboring temperate areas, Narragansett Bay and Long Island Sound. The most abundant fish species were the same in both areas, and regional abundances peaked in both areas in the middle of September, four weeks after the maximum temperature in the middle of August. On average, abundance of warm-water species increased throughout the years sampled, although this increase can not be said to be exclusively related to temperature. Weekly mean temperatures between the two locations were highly correlated (r= 0.99; P<0.001). The warm-water fish faunas were distinctly different in annual abundances in the two areas for each species by year (1987–2000), and these differences ref lect the variability in the transport processes to temperate estuaries. The results reveal information on the abundance of warm-water fish in relation to trends toward warmer waters in these region

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spawning periodicities of white seabass (Atractoscion nobilis) were evaluated by observing spawning behavior, by collecting eggs, and monitoring recognizable sounds produced during the release of gametes. A total of 297 spawning events were documented from 15 male and 47 female white seabass contained within the seminatural confines of a 526-m3 net pen located in Catalina Harbor, Santa Catalina Island, California. Consistent spawning occurred from March through July 2001−03, and peaked in May at a photoperiod of 14 hours. Most spawning occurred within the 2-hour period following sunset or from 19:00−20:00 hours Pacific Standard Time. White seabass spawned at every phase of the lunar cycle; but an increase in successive spawning events followed the new moon. Most spawning occurred in water temperatures from 15 to 18°C, and there was no apparent correlation with tidal cycles. Seasonal and diel spawning periods were directly correlated with increases in the rate, intensity, and variety of white seabass sounds; this correlation may indicate that sounds function to enhance reproductive success. These findings can be extended to further develop seasonal fishery regulations and to better comprehend the role of sound in the reproduction of sound-producing fishes.

Relevância:

20.00% 20.00%

Publicador: